Answer:
The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Explanation:
- To solve this problem, we use Clausius Clapeyron equation: ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂).
- The first case: P₁ = 1 atm = 760 torr and T₁ = 451.0 K.
- The second case: P₂ = <em>??? needed to be calculated</em> and T₂ = 61.5 °C = 334.5 K.
- ΔHvap = 48.8 KJ/mole = 48.8 x 10³ J/mole and R = 8.314 J/mole.K.
- Now, ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂)
- ln(760 torr /P₂) = (48.8 x 10³ J/mole / 8.314 J/mole.K) (1/451 K - 1/334.5 K)
- ln(760 torr /P₂) = (5869.62) (-7.722 x 10⁻⁴) = -4.53.
- (760 torr /P₂) = 0.01075
- Then, P₂ = (760 torr) / (0.01075) = 70691.73 torr.
So, The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Nuclear energy is called the energy obtained by the transformation of atomic nuclei, so small and heavy clusters of particles inside the atom. Nuclear energy can be produced in two ways, by cleavage or synthesis of nuclei. Heavy nuclei of radioactive elements such as uranium or plutonium, can be split into two nuclei. By splitting are released from the nucleus of neutrons that collide with other nuclei causing them to split and subsequent emission of neutrons. This is called a chain reaction. The condition calls self-sustaining nuclear reaction is slowing down neutrons. For this purpose, a special substance, called moderator. The neutrons collide with the molecules of the moderator precipitate heating speed while the moderator. The resulting heat heats the water so that a couple who drives a turbine generating electricity. Another way of producing nuclear energy is nuclear fusion, in which nuclei combine to light elements. So far, fusion, however, failed to carry out so that it can be applied to the economy as a source of energy.
Answer:More of the radioactivity is lost during the first half-life than in later half-lives.
Explanation: Passed test with 98
Diphosphorus tetraiodide is a covalent compound.
It has low melting point as compared to ionic compounds
It is a rare compound where the oxidation state of Phosphorous is +2.
It is also termed as subhalide of phosphorous.