Answer:
Dear user,
Answer to your query is provided below
When small amount of acid was added to buffered solution, pH will change very less.
Explanation:
Buffer solution resists change in ph on adding small amount of acid or base but when we calculate the value of buffer capacity we take the change in ph when we add acid or base to 1 lit solution of buffer.This contradicts the definition of buffer solution.
<em>Answer:</em>
- The atom consist of three parts, proton, neutron and electrons. The electrons determine that i will combine or beak from other substances.
<em>Explanation:</em>
The atom consist of three parts which are following
The proton and neutron form nucleus of an atom. It is present at center of an atom. They have positive charges, while electrons remained outside the nucleus in particular energy levels or shell around the nucleus.
During combination or breaking of substances ,only arrangements of electrons take place. The valence shell electrons decide whether they have to combine or not, while nucleus remained unchanged during any reactions.
Answer:
False
Explanation:
The slope of a velocity-time graph gives acceleration. Acceleration can be defined as the change in velocity with time.
A slope denotes the gradient of line. It takes into consideration the changes on both y and x axis. The ratio of the changes gives the slope.
On a velocity-time graph, the y-axis is the velocity and the x-axis is time. The change in velocity with time gives acceleration.
The slope of an acceleration
-time graph is not velocity.
The characteristic of the Bohr model that would best support his observation is this assumption: "The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has." The discrete, bright, colored lines might represent the electrons and its distance from the nucleus. The lights are caused by the energy it has.
<u>Answer:</u> The volume when the pressure and temperature has changed is 
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
Let us assume:
![P_1=1.20atm\\V_1=795mL\\T_1=116^oC=[116+273]K=389K\\P_2=0.55atm\\V_2=?mL\\T_2=75^oC=[75+273]K=348K](https://tex.z-dn.net/?f=P_1%3D1.20atm%5C%5CV_1%3D795mL%5C%5CT_1%3D116%5EoC%3D%5B116%2B273%5DK%3D389K%5C%5CP_2%3D0.55atm%5C%5CV_2%3D%3FmL%5C%5CT_2%3D75%5EoC%3D%5B75%2B273%5DK%3D348K)
Putting values in above equation, we get:

Hence, the volume when the pressure and temperature has changed is 