Answer:
3rd option. 1–butanamine
Explanation:
To name the compound above, the following must be observed:
1. Locate the functional group in the chain. In this case the functional group is amine.
2. Locate the longest continuous carbon chain. This gives the parent name of the compound. In this case, the longest chain has 4 carbon i.e butane.
3. Since the functional group is amine, the parent name becomes butanamine i.e replacing the –e at the end in butane with –amine
4. Indicate the position of the functional group in the chain. In this case the functional group is at carbon 1
5. Name the compound by putting the above together.
The name of the compound is:
1–butanamine or butan–1–amine
C2H2 is the right answer I believe
Answer: B. It is an ether because it is unable to to form a hydrogen bond, so it is less soluble than water
Explanation: Alcohols
are more soluble in water as they can form hydrogen bonding with water whereas ethers
are less soluble as they do not form hydrogen bonds with water.
For formation of hydrogen bond, the electronegative atom (F, Oand N) must be attached to hydrogen and in ethers (ROR), there is no hydrogen directly attached to electronegative oxygen atom, thus are less soluble in water.
1 charged atom is called a Proton
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.