Answer:
Al + 4AgNO3 >>Al(NO3)3+ 3Ag
Explanation:
the number of moles of No3 of the products is 3 therefore we have to balance the reactants by adding 3 before the "AgNO3" which also leades us to adding 3 mols to Ag on the products side
Answer:
22.73s
Explanation:
The reaction is a second order reaction, we know this by observing the unit of the slope.
rate constant = k = 0.056 M-1s-1
the initial concentration of BrO- [A]o = 0.80 M
time = ?
Final concentration [A]t= one-half of 0.80 M = 0.40M
1 / [A]t = kt + 1 / [A]o
1 / 0.40 = 0.056 * t + 1 / 0.80
t = (2.5 - 1.25) / 0.056
t = 22.73s
Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:




I Hope this helps, greetings ... DexteR! =)
Answer:
they are equal.
Explanation:
1 mol = 6.022 × 10^23 (Avogadro's constant), which is the number of atoms in 1 mol of any element. Doesn't matter what their atomic mass is, although, of course, 1 mol of carbon weighs less than 1 mol of calcium, but its because their mass is different, but the point is, in 1 mol of any element there is 6.03*10^23 atoms
This is like saying, what weighs more, 10 kg of feathers or 10 kg of metal
Answer:
I don't think it will
Explanation:
because Javier is moving which is causing for the temperature to change.