Explanation:
Entropy means the amount of randomness present within the molecules of the body of a substance.
Relation between entropy and microstate is as follows.
S = 
where, S = entropy
= Boltzmann constant
= number of microstates
This equation only holds good when the system is neither losing or gaining energy. And, in the given situation we assume that the system is neither gaining or losing energy.
Also, let us assume that
= 1, and
= 0.833
Therefore, change in entropy will be calculated as follows.

= 
= 
= 
or, = 
Thus, we can conclude that the entropy change for a particle in the given system is
J/K particle.
Answer: This contains magnesium, Mg2+, and hydroxide, OH–
, ions. Each magnesium ion is +2 and
each hydroxide ion is -1: two -1 ions are needed for one +2 ion, and the formula for magnesium
hydroxide is Mg(OH)2. The (OH)2 indicates there are two OH–
ions. In a formula unit of
Mg(OH)2, there are one magnesium ion and two hydroxide ions; or one magnesium, two
oxygen, and two hydrogen atoms. The subscript multiplies everything in ( )
hope that helped!!
Answer:
a)22.2°C after adding magnesium
b)17.3°C before adding magnesium
c) 4.9 is change
Answer:
0.1357 M
Explanation:
(a) The balanced reaction is shown below as:

(b) Moles of
can be calculated as:
Or,
Given :
For
:
Molarity = 0.1450 M
Volume = 10.00 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 10×10⁻³ L
Thus, moles of
:
Moles of
= 0.00145 moles
From the reaction,
1 mole of
react with 2 moles of NaOH
0.00145 mole of
react with 2*0.00145 mole of NaOH
Moles of NaOH = 0.0029 moles
Volume = 21.37 mL = 21.37×10⁻³ L
Molarity = Moles / Volume = 0.0029 / 21.37×10⁻³ M = 0.1357 M
•••••••••••••••••••••••••••••