Answer:
H-BI,H-Se,H-S,H-I,H-Br
Explanation:
One thing that must be kept in mind is that atomic size increases down the group and decreases across the period. The bond lengths of species are influenced by the relative sizes of atoms or ions present in the bond.
The bonds in the answer have been arranged on basis of their decreasing atomic size because the greater the atomic size of the atoms, the greater the bond length and vice versa.
Answer:
0.44 moles
Explanation:
Given that :
A mixture of water and graphite is heated to 600 K in a 1 L container. When the system comes to equilibrium it contains 0.17 mol of H2, 0.17 mol of CO, 0.74 mol of H2O, and some graphite.
The equilibrium constant ![K_c= \dfrac{[CO][H_2]}{[H_2O]}](https://tex.z-dn.net/?f=K_c%3D%20%20%5Cdfrac%7B%5BCO%5D%5BH_2%5D%7D%7B%5BH_2O%5D%7D)
The equilibrium constant 
The equilibrium constant 
Some O2 is added to the system and a spark is applied so that the H2 reacts completely with the O2.
The equation for the reaction is :

Total mole of water now = 0.74+0.17
Total mole of water now = 0.91 moles
Again:
![K_c= \dfrac{[CO][H_2]}{[H_2O]}](https://tex.z-dn.net/?f=K_c%3D%20%20%5Cdfrac%7B%5BCO%5D%5BH_2%5D%7D%7B%5BH_2O%5D%7D)
![0.03905 = \dfrac{[0.17+x][x]}{[0.91 -x]}](https://tex.z-dn.net/?f=0.03905%20%3D%20%20%5Cdfrac%7B%5B0.17%2Bx%5D%5Bx%5D%7D%7B%5B0.91%20-x%5D%7D)
0.03905(0.91 -x) = (0.17 +x)(x)
0.0355355 - 0.03905x = 0.17x + x²
0.0355355 +0.13095
x -x²
x² - 0.13095
x - 0.0355355 = 0
By using quadratic formula
x = 0.265 or x = -0.134
Going by the value with the positive integer; x = 0.265 moles
Total moles of CO in the flask when the system returns to equilibrium is :
= 0.17 + x
= 0.17 + 0.265
= 0.435 moles
=0.44 moles (to two significant figures)
Answer:
water has several important physical properties. Most of the physical properties of water are quite atypical e.g molar mass is 18.0151grams per mol and melting point is 0.00 degree
there are 8 planets in our solar system 1.Mercury 2.venus 3.earth 4.mars 5.jupiter 6.saturn 7.uranus 8. neptune