Answer:
<h2>775.75 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>775.75 moles</h3>
Hope this helps you
<span>I think it is a but dont take me for it. I searched it and thats what I found since liquid in beaker B is more dense then realtivley speaking the object is less dense compared other liquid and floats at a higher level.</span>
Answer:
15L will be the final volume
STEPS:
.50 + .25 = .75
.25/5 ÷ .75/x
(.75*5=3.25)
.25x = 3.25
x=15
quizlet
Answer:
4000 L
Explanation:
Step 1:
Data obtained from the question. This include the following:
Initial volume (V1) = 2000 L.
Initial temperature (T1) = 100 K.
Initial pressure (P1) = 100 kPa.
Final temperature (T2) = 400 K.
Final pressure (P2) = 200 kPa.
Final volume (V2) =..?
Step 2:
Determination of the new volume of the gas.
The new volume of the gas can be obtained by using the general gas equation as follow:
P1V1/T1 = P2V2/T2
100 x 2000/100 = 200 x V2/400
Cross multiply to express in linear form.
100 x 200 x V2 = 100 x 2000 x 400
Divide both side by 100 x 200
V2 = (100 x 2000 x 400)/(100 x 200)
V2 = 4000 L
Therefore, the new volume of the gas is 4000 L