Answer:
The resulting solution contains approximately 666 g of water.
Explanation:
In the initial solution we have:
1g salt : 8g sugar : 200g water
This means that the ratios are:

In the final solution we have:
5g salt: xg sugar: yg water
The new ratios are:

Now we can calculate the amount of sugar in the final solution:

Finally, we calculate the amount of water:

<span>the sharing of electron pairs between atoms</span>
2 and 3, because there are the protons and neutrons which have a greater mass than the electrons which are found in the locations 1 and 4.
Explanation:
The atom contains a nucleus, which is made from protons and neutrons, and electrons which are found around the nucleus.
The mass of the atoms is concentrated in the very tiny space represented by the nucleus. Of course the electrons have a mass too, but is very small compared to the protons and neutrons, and we usually neglect its mass.
Learn more about:
subatomic particles
brainly.com/question/7221719
brainly.com/question/1527888
#learnwithBrainly
Answer:
Metallic bonding
Explanation:
Metals have low ionization energies. Therefore, their valence electrons are easily delocalized (attracted to the neighbouring metal atoms). These delocalized electrons are then not associated with a specific metal atom. Since the electrons are “free”, the metal atoms have become cations, and the electrons are free to move throughout the whole crystalline structure.
We say that a metal consists of an array of cations immersed in a sea of electrons
.
The electrons act as a “glue” holding the cations together.
Metallic bonds are the attractive forces between the metal cations and the sea of electrons.
In an NaK alloy, for example, the Na and K atoms contribute their valence electrons to the "sea". The atoms aren’t bonded to each other, but they are held in place by the metallic bonding.
Answer:
T = 3206.89 K
Explanation:
Given that,
Number of moles, n = 1.9 moles
Pressure, P = 5 atm
Volume, V = 100 L
We need to find the temperature of the gas. Let the temperature is T. We know that,
PV = nRT
Where
R is gas constant, R = 0.08206 L-atm/mol-K
Put all the values,

So, the temperature of the gas is 3206.89 K.