1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svlad2 [7]
3 years ago
8

A circular loop of wire with radius 2.00 cm and resistance 0.600 Ω is in a region of a spatially uniform magnetic field B⃗ that

is perpendicular to the plane of the loop. At t = 0 the magnetic field has magnitude B0=3.00T. The magnetic field then decreases according to the equation B(t)=B0e−t/τ, where τ=0.500s.
Physics
1 answer:
Anika [276]3 years ago
5 0

Answer:

Incomplete questions

Let assume we are asked to find

Calculate the induced emf in the coil at any time, let say t=2

And induced current

Explanation:

Flux is given as

Φ=NAB

Where

N is number of turn, N=1

A=area=πr²

Since r=2cm=0.02

A=π(0.02)²=0.001257m²

B=magnetic field

B(t)=Bo•e−t/τ,

Where Bo=3T

τ=0.5s

B(t)=3e(−t/0.5)

B(t)=3exp(-2t)

Therefore

Φ=NAB

Φ=0.001257×3•exp(-2t)

Φ=0.00377exp(-2t)

Now,

Induce emf is given as

E= - dΦ/dt

E= - 0.00377×-2 exp(-2t)

E=0.00754exp(-2t)

At t=2

E=0.00754exp(-4)

E=0.000138V

E=0.138mV

b. Induce current

From ohms laws

V=iR

Given that R=0.6Ω

i=V/R

i=0.000138/0.6

i=0.00023A

i=0.23mA

You might be interested in
What environments does tornado not occur in?
Nadusha1986 [10]
The winter I think would be the answer
5 0
2 years ago
Read 2 more answers
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
Which component measures the potential difference across a branch in a circuit? A. switch B. resistor C. ammeter D. voltmeter
NNADVOKAT [17]

Answer:

Voltmeter

Explanation:

7 0
2 years ago
What are some ways to conserve electricity
emmasim [6.3K]
Turn off lights when leaving rooms.

Unplug unused appliances. Even when powered off these appliances use electricity.

Replace regular light bulbs with energy saving bulbs.
7 0
3 years ago
Read 2 more answers
SCALCET8 3.9.018.MI. A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the
Firlakuza [10]

Answer:

The length of his shadow is decreasing at a rate of 1.13 m/s

Explanation:

The ray of light hitting the ground forms a right angled triangle of height H, which is the height of the building and width, D which is the distance of the tip of the shadow from the building.

Also, the height of the man, h which is parallel to H forms a right-angled triangle of width, L which is the length of the shadow.

By similar triangles,

H/D = h/L

L = hD/H

Also, when the man is 4 m from the building, the length of his shadow is L = D - 4

So, D - 4 = hD/H

H(D - 4) = hD

H = hD/(D - 4)

Since h = 2 m and D = 12 m,

H = 2 m × 12 m/(12 m - 4 m)

H = 24 m²/8 m

H = 3 m

Since L = hD/H

and h and H are constant, differentiating L with respect to time, we have

dL/dt = d(hD/H)/dt

dL/dt = h(dD/dt)/H

Now dD/dt = velocity(speed) of man = -1.7 m/s ( negative since he is moving towards the building in the negative x - direction)

Since h = 2 m and H = 3 m,

dL/dt = h(dD/dt)/H

dL/dt = 2 m(-1.7 m/s)/3 m

dL/dt = -3.4/3 m/s

dL/dt = -1.13 m/s

So, the length of his shadow is decreasing at a rate of 1.13 m/s

5 0
2 years ago
Other questions:
  • under what circumstances can the average velocity of a moving object be zero when its average speed is 50 km/hr ?
    14·1 answer
  • For a car rounding a curve, what force provides the circular motion
    8·1 answer
  • Which scale is being described? Water freezes at 32 . Water freezes at 0 . Water freezes at 273 .
    14·2 answers
  • The location of a particle is measured with an uncertainty of 0.15 nm. One tries to simultaneously measure the velocity of this
    13·1 answer
  • Describe the work performed by a ski lift in terms of kinetic and gravitational potential energy
    9·2 answers
  • A 200-Ω resistor is connected in series with a 10-µF capacitor and a 60-Hz, 120-V (rms) line voltage. If electrical energy costs
    15·1 answer
  • Consider the potential energy diagram shown below. This graph shows the chemical potential energy in a reaction system over time
    5·1 answer
  • 13. What is the ground state?
    10·1 answer
  • 6) If nuclei A has a probability P of decaying in time t and nucleus B has a probability 2p of decaying in time t, which stateme
    13·1 answer
  • An uncharged, nonconducting, hollow sphere of radius 10.0cm surrounds a 10.0-μC charge located at the origin of a Cartesian coor
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!