Solving for the acceleration of the bullet
acceleration = (vf^2 – vi^2) / 2d
acceleration = ((280 m/s)^2 – (420 m/s)^2) / (2 * 0.12 m)
acceleration = (78400 - 176400) / 0.24 m
acceleration = -98000 / 0.24
acceleration = -408333 m/s^2
Solving for contact time with board
t^2 = 2d/a
t^2 = 2 * 0.12 m / 408333 m/s^2
t^2 = 0.24 m / 408333 m/s^2
t^2 = 5.8775558 x 10^-7
t = 0.0007666 s or 767 microseconds
(I was only able to do A and B)
Answer:
0.1 L
Explanation:
From the question given above, we obtained the following data:
Initial volume (V₁) = 0.05 L
Initial Pressure (P₁) = 207 KPa
Final pressure (P₂) = 101 KPa
Final volume (V₂) =?
We can obtain the new volume (i.e the final volume) of the gas by using the Boyle's law equation as illustrated below:
P₁V₁ = P₂V₂
207 × 0.05 = 101 × V₂
10.35 = 101 × V₂
Divide both side by 101
V₂ = 10.35 / 101
V₂ = 0.1 L
Thus, the new volume of the gas is 0.1 L
All forces must add up to zero. See pictures below.
Answer:
Force required to accelerate = 794.44 N
Explanation:
Force required = Mass of horse x Acceleration of horse
Mass of horse and rider, m= 572 kg
Acceleration of horse and rider, a = 5 kph per second

Force required = ma
= 572 x 1.39 = 794.44 N
Force required to accelerate = 794.44 N