Answer:
1.68 s
Explanation:
From newton's equation of motion,
a = (v-u)/t.................................. Equation 1
Making t the subject of the equation
t =(v-u)g............................. Equation 2
Where t = time taken for the bowling pin to reach the maximum height, v = final velocity bowling pin, u = initial velocity of the bowling pin, g = acceleration due to gravity.
Note: Taking upward to be negative and down ward to be positive,
Given: v = 0 m/s ( at the maximum height), u = 8.20 m/s, g = -9.8 m/s²
t = (0-8.20)/-9.8
t = -8.20/-9.8
t = 0.84 s.
But,
T = 2t
Where T = time taken for the bowling pin to return to the juggler's hand.
T = 2(0.84)
T = 1.68 s.
T = 1.68 s
A would be number 2. Newton's First Law states that an object at rest, will stay at rest and an object in motion, will stay in motion, unless acted upon by an unbalanced force. B would be number 3. His Second Law states that <span>the sum of the forces acting on a body is equal to the product of the mass of the body and the acceleration produced by the forces. And, C would be number 1. His Third Law states that for every action, there is an equal and opposite reaction. Hope this helps!</span>
A translucent object allows light to travel through its material.
Answer:
The value of the correct angle of banking for the road is
°
Explanation:
Given data
Velocity (v) = 60 
Radius = 150 m
The velocity of the car in this case is given by



Put all the values in above formula we get

2.446
°
Therefore the value of the correct angle of banking for the road is
°
Answer:
you need to be able to have long enough to reach and have it far away from things that are going to cause accidents