Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.
Answer:
a)R= sqrt( wt³/12wt)
b)R=sqrt(tw³/12wt)
c)R= sqrt ( wt³/12xcos45xwt)
Explanation:
Thickness = t
Width = w
Length od diagonal =sqrt (t² +w²)
Area of raectangle = A= tW
Radius of gyration= r= sqrt( I/A)
a)
Moment of inertia in the direction of thickness I = w t³/12
R= sqrt( wt³/12wt)
b)
Moment of inertia in the direction of width I = t w³/12
R=sqrt(tw³/12wt)
c)
Moment of inertia in the direction of diagonal I= (w t³/12)cos 45=( wt³/12)x 1/sqrt (2)
R= sqrt ( wt³/12xcos45xwt)
Answer:
26.7 min
Explanation:
First, we will find the <u>time required to drill each hole</u>:
- N = 300 x 12/0.75
= 1527.7 rev/min
- fr = 1527.7 (0.015) = 22.916 in/min
Formula for <u>distance per hole</u>: 0.5 + A + 1.75
- A = 0.5 (0.75) tan (90-100 / 2) = 0.315 in
- Tm = (0.5 + 0.315 + 1.75) / 22.916 = 0.112 min
Now, we will calculate the <u>time required to draw back the drill form hole</u>:
= 0.112 / 2 = 0.056 min
Time to move between holes = 1.5 / 15 = 0.1 min
For 100 holes, the number of moves between holes = 99
Total time required to drill 100 holes (t):
t = 100 (0.112 + 0.056) + 99 (0.1) = 26.7 min
Answer:
h = 10,349.06 W/m^2 K
Explanation:
Given data:
Inner diameter = 3.0 cm
flow rate = 2 L/s
water temperature 30 degree celcius




at 30 degree celcius 

Re = 106390
So ,this is turbulent flow



SOLVING FOR H
WE GET
h = 10,349.06 W/m^2 K
Answer:
<em><u>Hii</u></em><em><u> </u></em><em><u>Dear</u></em><em><u> </u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u> </u></em>
<em><u>How</u></em><em><u> are</u></em><em><u> you</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>I</u></em><em><u> </u></em><em><u>hop</u></em><em><u>e</u></em><em><u> </u></em><em><u>That</u></em><em><u> </u></em><em><u>you</u></em><em><u> are</u></em><em><u> </u></em><em><u>Fine</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Explanation:
<em><u>So</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>_</u></em><em><u>_</u></em><em><u>d</u></em><em><u>o</u></em><em><u>e</u></em><em><u>s</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em>