1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
4 years ago
5

What is s the best description of the constructive interference of light?

Physics
2 answers:
kicyunya [14]4 years ago
6 0
B it is verified jhjhjhjh
Slav-nsk [51]4 years ago
3 0

Answer:

B. two waves have displacement in opposite directionsxplanation:

You might be interested in
PLEASE HELP!! Newtons first law states that if an objects velocity is changing a __________ must be acting on it. Question 1 opt
Anika [276]

Newtons first law states that if an objects velocity is changing a <u>force</u> must be acting on it.

Explanation:

Newton's first law of motion states that:

"An object at rest (or in uniform motion) will remain at rest (or will continue moving with the same velocity) unless acted upon an unbalanced force"

We can apply this law to a daily life example:

  • Take a book at rest on a table: the forces acting on the book are balanced. If we do not apply any other force, we know that the book will remain at rest: this is exactly what is summarized in Newton's first law.
  • Take a space probe moving in the interstellar space, very far from any planet or source of gravitational force. Since there are no forces acting on the proble, the probe will continue moving at the same velocity (same speed and same direction) forever, unless stopped by a new force acting on it.

This means that in order to put an object at rest in motion, or to stop an object already in motion, or to change its velocity, an unbalanced force needs to be applied: otherwise, the object will continue having the same velocity (which can be either zero or non-zero), so it will continue having  same speed and same direction.

Learn more about Newton laws of motion:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

#LearnwithBrainly

5 0
3 years ago
Is speed an example of force?
Mars2501 [29]

No. Speed is speed and force is force.

8 0
4 years ago
Which of the following is a conversion of potential to kinetic energy?
ruslelena [56]
Its either releasing a stretch rubber band and a ball rolling down a hill because rubber have a potential to move when its stretch and its an eleastic potential energy also a ball rolling down a hill is a gravitational to kinetic energy because the ball started at rest which is art the top of the hill and it has a potential to fall. Once its started rolling its energy transfer into kinetic energy.
Hope this helps
4 0
4 years ago
. (Use equations not the psychrometric chart) The dry- and wet-bulb temperatures of atmospheric air at 95 kPa are 25 and 17oC, r
Fantom [35]

Answer:

a) The specific humidity of air is 9.774\times 10^{-3}\,\frac{kg\,H_{2}O}{kg\,DA}.

b) The specific humidity of air is 0.464.

c) The dew-point temperature is 12.665 ºC.

Explanation:

a) The temperature of atmospheric air is considered the dry-bulb temperature, whereas the temperature of entirely saturated air is the the wet-bulb temperature. Dry bulb pressure is the atmospheric air. First we need to find the specific humidity at wet bulb temperature (\omega_{wb}), measured in kilograms of water per kilogram of dry air:

\omega_{wb} = \frac{0.622\cdot P_{wb}}{P_{db}-P_{wb}} (Eq. 1)

Where:

P_{wb} - Wet bulb pressure, measured in kilopascals.

P_{db} - Dry bulb pressure, measured in kilopascals.

Wet bulb pressure is the saturation pressure of water evaluated at wet bulb temperature, while dry bulb pressure in the pressure presented on statement. If P_{db} = 95\,kPa and P_{wb} = 1.9591\,kPa, then the specific humidity at wet bulb temperature is:

\omega_{wb} = \frac{0.622\cdot (1.9591\,kPa)}{95\,kPa-1.9591\,kPa}

\omega_{wb} = 0.0131\,\frac{kg\,H_{2}O}{kg\,DA}

Now we use the following equation to determine the dry bulb specific humidity (\omega_{db}), measured in kilograms of water per kilogram of dry air:

\omega_{db} = \frac{c_{p,a}\cdot (T_{wb}-T_{db})+\omega_{wb}\cdot h_{fg,wb}}{h_{g,db}-h_{f,wb}} (Eq. 2)

Where:

c_{p,a} - Isobaric specific heat of air, measured in kilojoules per kilogram-Celsius.

T_{wb} - Wet-bulb temperature, measured in Celsius.

T_{db} - Dry-bulb temperature, measured in Celsius.

\omega_{wb} - Wet-bulb specific humidity, measured in kilograms of water per kilogram of dry air.

h_{fg,wb} - Wet-bulb specific enthalpy of vaporization of water, measured in kilojoules per kilogram.

h_{g,db} - Dry-bulb specific enthalpy of saturated vapor, measured in kilojoules per kilogram.

h_{f,wb} - Wet-bulb specific enthalpy of liquid vapor, measured in kilojoules per kilogram.

If we know that T_{wb} = 17\,^{\circ}C, T_{db} = 25\,^{\circ}C, c_{p,a} = 1.005\,\frac{kJ}{kg\cdot ^{\circ}C}, \omega_{wb} = 0.0131\,\frac{kg\,H_{2}O}{kg\,DA}, h_{fg, wb} = 2460.6\,\frac{kJ}{kg}, h_{g,db} = 2546.5\,\frac{kJ}{kg} and h_{f,wb} = 71.355\,\frac{kJ}{kg}, the dry bulb specific humidity is:

\omega_{db} = \frac{\left(1.005\,\frac{kJ}{kg\cdot ^{\circ}C} \right)\cdot (17\,^{\circ}C-25\,^{\circ}C)+\left(0.0131\,\frac{kg\,H_{2}O}{kg\,DA} \right)\cdot \left(2460.6\,\frac{kJ}{kg} \right)}{2546.5\,\frac{kJ}{kg}-71.355\,\frac{kJ}{kg}  }

\omega_{db} = 9.774\times 10^{-3}\,\frac{kg\,H_{2}O}{kg\,DA}

The specific humidity of air is 9.774\times 10^{-3}\,\frac{kg\,H_{2}O}{kg\,DA}.

b) Then, the relative humidity of air (\phi_{db}), dimensionless, is obtained from this expression:

\phi_{db} = \frac{\omega_{db}\cdot P_{db}}{(0.622+\omega_{db})\cdot P_{sat, db}} (Eq. 3)

Where P_{sat, db} is the saturation pressure at dry-bulb temperature, measured in kilopascals.

If we know that \omega_{db} = 9.774\times 10^{-3}\,\frac{kg\,H_{2}O}{kg\,DA}, P_{db} = 95\,kPa and P_{sat, db} = 3.1698\,kPa, the relative humidity of air is:

\phi_{db} = \frac{\left(9.774\times 10^{-3}\,\frac{kg\,H_{2}O}{kg\,DA} \right)\cdot (95\,kPa)}{\left(0.622+9.774\times 10^{-3}\,\frac{kg\,H_{2}O}{kg\,DA}\right)\cdot 3.1698\,kPa}

\phi_{db} = 0.464

The specific humidity of air is 0.464.

c) The dew point temperature is the temperature at which water is condensated when air is cooled at constant pressure. That temperature is equivalent to the saturation temperature at vapor pressure (P_{v}), measured in kilopascals:

P_{v} = \phi_{db} \cdot P_{sat, db} (Eq. 4)

(\phi_{db} = 0.464, P_{sat, db} = 3.1698\,kPa)

P_{v} = 0.464\cdot (3.1698\,kPa)

P_{v} = 1.4707\,kPa

The saturation temperature at given vapor pressure is:

T_{dp} = 12.665\,^{\circ}C

The dew-point temperature is 12.665 ºC.

4 0
4 years ago
Helppppppppppppppppppppppppppppppppppppppppppppppp
marta [7]

Answer:

A

My logic:

Heliocentrism is the astronomical model in which the Earth and planets revolve around the Sun at the center of the Universe.

Hope this helps!

8 0
3 years ago
Other questions:
  • g A rock is suspended from a string, and it accelerates downward. Which one of the following statements is correct? Group of ans
    11·1 answer
  • 0.300 kg baseball just before and just after it collides with a bat. Just before, the ball has velocity of magnitude 12.0 m/s an
    12·1 answer
  • An electrical drill has 100 J of chemical energy. Of the 100 J, 45 J are transformed into kinetic energy and 20 J are transforme
    12·2 answers
  • Which solute will dissolve first in the illustration?
    15·1 answer
  • The three forces shown act on a particle. what is the direction of the resultant of these three forces?
    11·1 answer
  • A 7.26kg bowling ball (16 pounds) is at rest what is the net force on the bowling ball
    9·1 answer
  • What is a normal force?
    5·1 answer
  • 29. Use the figure to determine in what direction the north magnetic pole of the compass will point. what type of magnetic pole
    6·1 answer
  • A coin is resting on the bottom of an empty container. The container is then filled to the brim three times, each time with a di
    6·1 answer
  • Please choose all that describe a series circuit.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!