If a theory is studied in let's say the 17th century, the theory has had many years to be studied and explained by many different people many different ways.
Answer is c, they are equal:
Explanation:
Answer: Noise above 70 dB can cause hearing damage
Explanation:
Answer:
about 19.6° and 73.2°
Explanation:
The equation for ballistic motion in Cartesian coordinates for some launch angle α can be written ...
y = -4.9(x/s·sec(α))² +x·tan(α)
where s is the launch speed in meters per second.
We want y=2.44 for x=50, so this resolves to a quadratic equation in tan(α):
-13.6111·tan(α)² +50·tan(α) -16.0511 = 0
This has solutions ...
tan(α) = 0.355408 or 3.31806
The corresponding angles are ...
α = 19.5656° or 73.2282°
The elevation angle must lie between 19.6° and 73.2° for the ball to score a goal.
_____
I find it convenient to use a graphing calculator to find solutions for problems of this sort. In the attachment, we have used x as the angle in degrees, and written the function so that x-intercepts are the solutions.
<span>Density is 3.4x10^18 kg/m^3
Dime weighs 1.5x10^12 pounds
The definition of density is simply mass per volume. So let's divide the mass of the neutron star by its volume. First, we need to determine the volume. Assuming the neutron star is a sphere, the volume will be 4/3 pi r^3, so
4/3 pi 1.9x10^3
= 4/3 pi 6.859x10^3 m^3
= 2.873x10^10 m^3
Now divide the mass by the volume
9.9x10^28 kg / 2.873x10^10 m^3 = 3.44588x10^18 kg/m^3
Since we only have 2 significant digits in our data, round to 2 significant digits, giving 3.4x10^18 kg/m^3
Now to figure out how much the dime weighs, just multiply by the volume of the dime.
3.4x10^18 kg/m^3 * 2.0x10^-7 m^3 = 6.8x10^11 kg
And to convert from kg to lbs, multiply by 2.20462, so
6.8x10^11 kg * 2.20462 lb/kg = 1.5x10^12 lb</span>