Answer:
The vapor pressure of the solution is 3.69 torr
Explanation:
Step 1: Data given
Mole fraction of benzene in the solution = 0.139
P° of benzene is 26.5 torr
Step 2: Calculate the vapor pressure of the solution
Psolution = Xbenzene * P°benzene
⇒with Psolution = the vapor pressure of the solution
⇒with Xbenzene = the mole fraction of benzene = 0.139
⇒with P°benzene = the vapor pressure of pure benzene = 26.5 torr
Psolution = 0.139 * 26.5 torr
Psolution = 3.69 torr
The vapor pressure of the solution is 3.69 torr
C = 12 g
O = 16 g
H = 1 g
<h3>Further explanation
</h3>
Conservation of mass stated that
<em>In a closed system, the masses before and after the reaction are the same
</em>
we can calculate the mass of each atom in the compound :
O in O₂ :
mass O₂ = 32
mass O = 32 : 2 = 16 g
H in H₂O
mass H₂O = 18
mass 2.H + mass O = 18
mass 2.H + 16 = 18
mass 2.H=2
mass H = 1 g
C in CH₄
mass CH₄ = 16
mass C + mass 4.H = 16
mass C + 4.1=16
mass C = 12 g
or we can use formula :
Mass of a single C :

Tin
Chemical Element
Tin is a chemical element with the symbol Sn and atomic number 50. It is a main group metal in group 14 of the periodic table. Wikipedia
Symbol: Sn
Electron configuration: [Kr] 4d105s25p2
Atomic number: 50
Melting point: 449.5°F (231.9°C)
Atomic mass: 118.71 u
Boiling point: 4,717°F (2,603°C)
Electrons per shell: 2, 8, 18, 18, 4
Answer:
The decomposition of ethane is 153.344 times much faster at 625°C than at 525°C.
Explanation:
According to the Arrhenius equation,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate of reaction at 
= rate of reaction at 
= activation energy of the reaction
R = gas constant = 8.314 J/K mol


![\log (\frac{K_2}{K_1})=\frac{300,000 J/mol}{2.303\times 8.314 J/K mol}[\frac{1}{798.15 K}-\frac{1}{898.15 K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7B300%2C000%20J%2Fmol%7D%7B2.303%5Ctimes%208.314%20J%2FK%20mol%7D%5B%5Cfrac%7B1%7D%7B798.15%20K%7D-%5Cfrac%7B1%7D%7B898.15%20K%7D%5D)


The decomposition of ethane is 153.344 times much faster at 625°C than at 525°C.