Answer:
The greater the sample size the better is the estimation. A large sample leads to a more accurate result.
Step-by-step explanation:
Consider the table representing the number of heads and tails for all the number of tosses:
Number of tosses n (HEADS) n (TAILS) Ratio
10 3 7 3 : 7
30 14 16 7 : 8
100 60 40 3 : 2
Compute probability of heads for the tosses as follows:

The probability of heads in case of 10 tosses of a coin is -0.20 away from 50/50.

The probability of heads in case of 30 tosses of a coin is -0.033 away from 50/50.

The probability of heads in case of 100 tosses of a coin is 0.10 away from 50/50.
As it can be seen from the above explanation, that as the sample size is increasing the distance between the expected and observed proportion is decreasing.
This happens because, the greater the sample size the better is the estimation. A large sample leads to a more accurate result.
<span>binomial </span>is an algebraic expression containing 2 terms. For example, (x + y) is a binomial.
We sometimes need to expand binomials as follows:
(a + b)0 = 1
(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2
(a + b)3 = a3 + 3a2b + 3ab2 + b3
<span>(a + b)4</span> <span>= a4 + 4a3b</span><span> + 6a2b2 + 4ab3 + b4</span>
<span>(a + b)5</span> <span>= a5 + 5a4b</span> <span>+ 10a3b2</span><span> + 10a2b3 + 5ab4 + b5</span>
Clearly, doing this by direct multiplication gets quite tedious and can be rather difficult for larger powers or more complicated expressions.
Pascal's Triangle
We note that the coefficients (the numbers in front of each term) follow a pattern. [This was noticed long before Pascal, by the Chinese.]
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
You can use this pattern to form the coefficients, rather than multiply everything out as we did above.
The Binomial Theorem
We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
<span>Properties of the Binomial Expansion <span>(a + b)n</span></span><span><span>There are <span>\displaystyle{n}+{1}<span>n+1</span></span> terms.</span><span>The first term is <span>an</span> and the final term is <span>bn</span>.</span></span><span>Progressing from the first term to the last, the exponent of a decreases by <span>\displaystyle{1}1</span> from term to term while the exponent of b increases by <span>\displaystyle{1}1</span>. In addition, the sum of the exponents of a and b in each term is n.</span><span>If the coefficient of each term is multiplied by the exponent of a in that term, and the product is divided by the number of that term, we obtain the coefficient of the next term.</span>
Answer:
81m+27t
Step-by-step explanation:
We need to distribute the 9 to the terms inside the parentheses:
9(9m+3t)=9(9m)+9(3t)=81m+27t
Answer:
x = 28
Step-by-step explanation:
(3x + 6^o) = 90^o
3x = 84^o
x = 28
Answer:
Arrange the variables to y intercept form: y=-x+2. We have the slope is -1, and the y intercept is 2. You should be able to draw a line from here.
Step-by-step explanation: