This problem is providing us with the mass of propane, its enthalpy of combustion, and the initial and final temperature of water that can be heated from the burning of this fuel. At the end, the result turns out to be 42.27 L.
<h3>Combustion:</h3>
In chemistry, combustion reactions are based on the burning of fuels by using oxygen and producing both carbon dioxide and water. For propane, we will have:

Hence, we can calculate the heat released from this reaction by using the mass, which has to be converted to moles, and the given enthalpy of combustion:

<h3>Calorimetry:</h3>
In chemistry, we can analyze the mass-specific heat-temperature-heat relationship via the most general heat equation:

Thus, since Q was obtained from the previous problem, but the sign change because the released heat is now absorbed by the water, one can calculate the mass of water that rises from 20.0°C to 100.0°C with this heat:

Finally, we convert it to liters as required:

Learn more about calorimetry: brainly.com/question/1407669
Answer:
Equilibrium concentration of
is 12.5 M
Explanation:
Given reaction: 
Here, ![K_{c}=\frac{[C_{2}H_{5}OH]}{[C_{2}H_{4}][H_{2}O]}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC_%7B2%7DH_%7B5%7DOH%5D%7D%7B%5BC_%7B2%7DH_%7B4%7D%5D%5BH_%7B2%7DO%5D%7D)
where
represents equilibrium constant in terms of concentration and species inside third bracket represent equilibrium concentrations
Here,
,
and 
So, ![[H_{2}O]=\frac{[C_{2}H_{5}OH]}{[C_{2}H_{4}]\times K_{c}}=\frac{1.69}{0.015\times 9.0}=12.5M](https://tex.z-dn.net/?f=%5BH_%7B2%7DO%5D%3D%5Cfrac%7B%5BC_%7B2%7DH_%7B5%7DOH%5D%7D%7B%5BC_%7B2%7DH_%7B4%7D%5D%5Ctimes%20K_%7Bc%7D%7D%3D%5Cfrac%7B1.69%7D%7B0.015%5Ctimes%209.0%7D%3D12.5M)
Hence equilibrium concentration of
is 12.5 M
Answer: B. Elements are represented by chemical formulas.
Elements are pure substances, which means that they cannot be broken down into simpler substances. The element is the most basic substance that exists, breaking it down further means breaking it down into protons, neutrons, and electrons, which is no longer a substance.
Elements have chemical properties that allow them to form different types of bonds with other elements.
However, elements *alone* are not represented by their chemical formulas. Only chemical bonds or ions are represented by a chemical formula.
Answer:
1 oxygen 1 hydrogen hydrogen peroxide I think