Answer:
-1.05 V
Explanation:
A detailed diagram of the setup as required in the question is shown in the image attached to this answer. The electrolytes chosen are SnCl2 for the anode half cell and MnCl2 for the cathode half cell. Tin rod and manganese rod are used as the anode and cathode materials respectively. Electrons flow from anode to cathode as indicated. The battery connected to the set up drives this non spontaneous electrolytic process.
Oxidation half equation;
Sn(s) ------> Sn^2+(aq) + 2e
Reduction half equation:
Mn^2+(aq) + 2e ----> Mn(s)
Cell voltage= E°cathode - E°anode
E°cathode= -1.19V
E°anode= -0.14 V
Cell voltage= -1.19 V - (-0.14V)
Cell voltage= -1.05 V
Answer:
A<u> covalent bond</u> will hold them together.
Explanation:
The two bromine atoms will share electrons to build a stronger bond and have a full valence outer shell (which makes them stable).
Hope this helps!
Answer:
Explanation:
Ionic compounds are formed by combining a metal and a nonmetal.
Molecular compounds are formed by two or more nonmetals.
Answer:
Electrons arrangement change is almost constant down the group, hence nuclear charge is almost constant.
But the energy levels on which electrons are arranged increase down the group, hence shielding or screening effect increases.
Answer:
The temperature at which the liquid vapor pressure will be 0.2 atm = 167.22 °C
Explanation:
Here we make use of the Clausius-Clapeyron equation;

Where:
P₁ = 1 atm =The substance vapor pressure at temperature T₁ = 282°C = 555.15 K
P₂ = 0.2 atm = The substance vapor pressure at temperature T₂
= The heat of vaporization = 28.5 kJ/mol
R = The universal gas constant = 8.314 J/K·mol
Plugging in the above values in the Clausius-Clapeyron equation, we have;


T₂ = 440.37 K
To convert to Celsius degree temperature, we subtract 273.15 as follows
T₂ in °C = 440.37 - 273.15 = 167.22 °C
Therefore, the temperature at which the liquid vapor pressure will be 0.2 atm = 167.22 °C.