The answer would be A. As the bat is swung, it gains kinetic energy. But once it hits the ball, it loses, or transfers, it’s kinetic energy to the ball.
If a constant force is applied on a body, the body moves with constant acceleration.
The distance an object falls, from rest, in gravity is
D = (1/2) (G) (T²)
'T' is the number seconds it falls.
In this problem,
0.92 meter = (1/2) (9.8) (T²)
Divide each side by 4.9 : 0.92 / 4.9 = T²
Take the square root
of each side: √(0.92/4.9) = T
0.433 sec = T
The horizontal speed doesn't make a bit of difference in
how long it takes to reach the floor. BUT ... if you want to
know how far from the table the pencil lands, you can find
that with the horizontal speed.
The pencil is in the air for 0.433 second.
In that time, it travels
(0.433s) x (1.4 m/s) = 0.606 meter
from the edge of the table.
<span>We know that the momentum keeps constant in a inelastic collisions, so the product of mass and speed do not change:
m1 * v1 + m2 * v2 = m * v
1 * 1 + 5 * 0 = (1 + 5) * v
1 = 6 * v
v = 1/6 m/s
So the final speed of the 6 kg chunk will travel at 0.167 m/s</span>
The answer is c .Frequency