Answer:
q=1.4*10^{-9}C
Explanation:
Given data:
charge on ruler = -14μC
Mass of tissue is 5 g
To Know the minimum charge, equate electrostatic force to weight
we have F = W
so
putting all value in equation,

solving for q

or q=1.4*10^{-9}C
Explanation:
Draw a free body diagram for each disc.
Disc A has three forces acting on it: 86.5 N up, T₁ down, and Wa down.
∑F = ma
86.5 N − T₁ − Wa = 0
Wa = 86.5 N − T₁
ma × 9.8 m/s² = 86.5 N − 55.6 N
ma = 3.2 kg
Disc B has three forces acting on it: T₁ up, T₂ down, and Wb down.
∑F = ma
T₁ − T₂ − Wb = 0
Wb = T₁ − T₂
mb × 9.8 m/s² = 55.6 N − 36.5 N
mb = 1.9 kg
Disc C has three forces acting on it: T₂ up, T₃ down, and Wc down.
∑F = ma
T₂ − T₃ − Wc = 0
Wc = T₂ − T₃
mc × 9.8 m/s² = 36.5 N − 9.6 N
mc = 2.7 kg
Disc D has two forces acting on it: T₃ up and Wd down.
∑F = ma
T₃ − Wd = 0
Wd = T₃
md × 9.8 m/s² = 9.6 N
md = 0.98 kg
Answer:
B. Containing charged regions
Explanation:
The term i.e. intermolecular forces would be used to explain the attraction forces. Here the interaction would be done between molecules etc that acts between the acts & the other types of particles i.e. neighboring like atoms or ions
So in the given case, the option b would be contributed to the molecules that have intermolecular forces
hence, the option b is correct
The mass of this bag of cement in S.I. units (kg) is equal to 0.062 kilograms.
<u>Given the following data:</u>
- Mass of cement = 62 grams.
To calculate the mass of this bag of cement in S.I. units (kg):
<h3>How to convert to
S.I. units.</h3>
In Science, kilograms (kg) is the standard unit of measurement or S.I. units of the mass of a physical object. Thus, we would convert the value of the mass of this bag of cement in grams to kilograms (kg) as follows:
<u>Conversion:</u>
1000 grams = 1 kilograms.
62 grams = X kilograms.
Cross-multiplying, we have:
X = 
X = 0.062 kilograms.
Read more on mass here: brainly.com/question/13833323