Answer:
<h3><u>C</u><u>.</u><u>2</u><u>5</u><u>0</u><u> </u><u>l</u><u>b</u><u> </u><u>i</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>.</u><u>.</u><u>.</u></h3>
A mature thunderstorm will contain both updraft and downdrafts. The given statement is true.
When the cumulus cloud becomes very large, the water in it becomes large and heavy. Raindrops start to fall through the cloud when the rising air can no longer hold them up. Meanwhile, cool dry air starts to enter the cloud. Because cool air is heavier than warm air, it starts to descend in the cloud (known as a downdraft). The downdraft pulls the heavy water downward, making rain.
This cloud has become a cumulonimbus cloud because it has an updraft, a downdraft, and rain. Thunder and lightning start to occur, as well as heavy rain. The cumulonimbus is now a thunderstorm cell.
The process of flask becoming cold is due to endothermic reaction.
Answer: Option B
<u>Explanation:</u>
So two kinds of heat transfer can be possible in any chemical reaction. If the sample is considered as system and the sample container is considered as the surrounding, then heat transfer can occur between them.
If the heat is transferred from the surrounding to the system , then it is an endothermic reaction. And in those cases, the sample holder will be becoming colder. This is because the heat from the surrounding that is the container will be utilized to complete the reaction.
While when there is transfer of heat from the system to surrounding , it will be exothermic reaction and the beaker will be getting hot in this process. So in the present case, the container is becoming cold because of occurrence of endothermic process.
Answer:
1.551×10^-8 Ωm
Explanation:
Resistivity of a material is expressed as shown;.
Resistivity = RA/l
R is the resistance of the material
A is the cross sectional area
l is the length of the wire.
Given;
R = 0.0310 Ω
A = πd²/4
A = π(2.05×10^-3)²/4
A = 0.000013204255/4
A = 0.00000330106375
A = 3.30×10^-6m
l = 6.60m
Substituting this values into the formula for calculating resistivity.
rho = 0.0310× 3.30×10^-6/6.60
rho = 1.023×10^-7/6.60
rho = 1.551×10^-8 Ωm
Hence the resistivity of the material is 1.551×10^-8 Ωm