1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikentia [17]
4 years ago
12

Can anyone help me I will give you 30 points

Physics
1 answer:
Aleonysh [2.5K]4 years ago
3 0

Answer:

1) ELECTRO MAGNET

2) B

3) -AMOUNT OF ELECTRICITY OF THE POWER SOURCE

- AMOUNT OF COIL WRAPPED UP TO THE NAIK

-CONDUCTIVITY OF THE MEDIUM

You might be interested in
HELP ASAP How are the bars in barred spiral galaxies thought to have formed?
sergey [27]

Answer:

D. slow evolution

Explanation:

8 0
3 years ago
Two identical traveling waves, moving in the same direction, are out of phase by π/5.0 rad. What is the amplitude of the resulta
andreev551 [17]

Answer:

Therefore the amplitude of the resultant wave is =0.95 y_m

Explanation:

The equation of wave:

y=A sin (kx-ωt)

For wave 1:

y₁=A sin (kx-ωt) = y_{m}sin (kx-ωt)

For wave 2:

y₂=A sin (kx-ωt+Φ) = y_{m}sin (kx-ωt+Φ)

Where A= amplitude=y_m

The angular frequency \omega=\frac{2\pi}{T}

k=\frac{2\pi}{\lambda} , \lambda= wave length.

t= time

T= Time period

\phi = phase difference =  \frac{\pi}{5}

The resultant wave will be

y = y₁ + y₂

 =y_m sin (kx-ωt) + y_m sin (kx-ωt+Φ)

 =y_m {sin (kx-ωt) + sin (kx-ωt+Φ)}

 =y_m\  sin(\frac{kx-\omega t +\phi + kx-\omega t }2)\ cos(\frac{kx-\omega t  +\phi -kx+\omega t}2)

 =y_m\  sin({kx-\omega t +\frac\phi 2)\ cos(\frac{\phi }2)

=y_m\ cos(\frac{\phi }2) sin({kx-\omega t +\frac\phi 2)

Therefore the amplitude of the resultant wave is

=y_m\ cos(\frac{\phi }2)

=y_m\ cos(\frac{\pi }{10})

=0.95 y_m

6 0
4 years ago
May you help me answer this​
Firdavs [7]

1) See three Kepler laws below

2a) Acceleration is 2.2 m/s^2

2b) Tension in the string: 27.4 N

3a) Kinetic energy is the energy of motion, potential energy is the energy due to the position

3b) The kinetic energy of the object is 2.25 J

Explanation:

1)

There are three Kepler's law of planetary motion:

  1. 1st law: the planets orbit the sun in elliptical orbits, with the Sun located at one of the 2 focii
  2. 2nd law: a segment connecting the Sun with each planet sweeps out equal areas in equal time intervals. A direct consequence of this is that, when a planet is further from the sun, it travels slower, and when it is closer to the sun, it travels faster
  3. 3rd law: the square of the period of revolution of a planet around the sun is directly proportional to the cube of the semi-major axis of its orbit. Mathematically, T^2 \propto r^3, where T is the period of revolution and r is the semi-major axis of the orbit

2a)

To solve the problem, we have to write the equation of motions for each block along the direction parallel to the incline.

For the block on the right, we have:

M g sin \theta - T = Ma (1)

where

Mg sin \theta is the component of the weight of the block parallel to the incline, with

M = 8.0 kg (mass of the block)

g=9.8 m/s^2 (acceleration of gravity)

\theta=35^{\circ}

T = tension in the string

a = acceleration of the block

For the block on the left, we have similarly

T-mg sin \theta = ma (2)

where

m = 3.5 kg (mass of the block)

\theta=35^{\circ}

From (2) we get

T=mg sin \theta + ma

Substituting into (1),

M g sin \theta - mg sin \theta - ma = Ma

Solving for a,

a=\frac{M-m}{M+m}g sin \theta=\frac{8.0-3.5}{8.0+3.5}(9.8)(sin 35^{\circ})=2.2 m/s^2

2b)

The tension in the string can be calculated using the equation

T=mg sin \theta + ma

where

m = 3.5 kg (mass of lighter block)

g=9.8 m/s^2

\theta=35^{\circ}

a=2.2 m/s^2 (acceleration found in part 2)

Substituting,

T=(3.5)(9.8)(sin 35^{\circ}) +(3.5)(2.2)=27.4 N

3a)

The kinetic energy of an object is the energy due to its motion. It is calculated as

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

The potential energy is the energy possessed by an object due to its position in a gravitational field. For an object near the Earth's surface, it is given by

U=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the heigth of the object relative to the ground

3b)

The kinetic energy of an object is given by

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

For the object in this problem,

m = 500 g = 0.5 kg

v = 3 m/s

Substituting, we find its kinetic energy:

K=\frac{1}{2}(0.5)(3)^2=2.25 J

Learn more about acceleration and forces:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

And about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

7 0
4 years ago
The sun is 1.50x10^11 m from earth. How long does it take the suns light to reach earth? How long
galina1969 [7]

Answer:

what i don't understand the question

3 0
3 years ago
Complete the table
Degger [83]

Answer: the second one

Explanation:

4 0
3 years ago
Other questions:
  • Two students on roller skates stand face-toface, then push each other away. One student has a mass of 93 kg and the second stude
    5·1 answer
  • Identify the action/reaction force pair involved when you catch a ball?
    13·1 answer
  • A 7.5 kg cannon ball leaves a canon with a speed of 185 m/s. Find the average net force applied to the ball if the cannon muzzle
    13·1 answer
  • 50 pounds is equal to 22,700 grams. How many pounds does this backpack full of gold weigh? Would you be able to carry out that b
    8·1 answer
  • Pretty Easy question please answer only 20 minutes left:
    13·1 answer
  • In an inkjet printer, letters and images are created by squirting drops of ink horizontally at a sheet of paper from a rapidly m
    12·1 answer
  • What is the name of the part of the wave that is labeled -
    11·1 answer
  • What do you mean by exercise​
    8·1 answer
  • You push on a box with a force of 300 N directly north. Another person pushes the box with a
    8·1 answer
  • Bina is pushing a box filled with winter clothing into the closet. The box has a mass of 11.4 kg, and when she pushes with a for
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!