The answer on edguinity is A magnitude 8 earthquake is 1,000 times more intense than a magnitude 5 earthquake. A magnitude 8 earthquake is 108 times more intense than a standard earthquake, while a magnitude 5 earthquake is 105 times more intense than a standard earthquake, and 108 ÷ 105 = 103. Each unit increase on the Richter scale corresponds to an intensity increase by a factor of 10. So from 5 to 8 on the Richter scale, the intensity increases by 103 = 1,000.
Answer:
1.085 x 10²⁴
Explanation:
The answer is not in your choices, but it maybe due to a typo but to get the answer to this, you just need to convert the grams to moles, then moles to atoms.
First we get the mass of the molecule for every mole. Get the atomic mass of each element and multiply it by the number of atoms present then get their total.
N₂O₃
Element number of atoms Atomic mass TOTAL
N 2 x 14.007 28.014
O 3 x 15.999 <u>47.997</u>
76.011 g/mole
So now we know for every 1 mole of N₂O₃ there are 76.011 g of N₂O₃.
Next we need to see how many moles of N₂O₃ are there in 137.0g of N₂O₃.

Now we know that we have 1.802moles of N₂O₃.
We use Avogadro's constant to find out how many atoms there are. Avogadro's constant states that for every mole of any substance, there are 6.022140857 × 10²³ atoms.

Answer : The equilibrium will shift in the left direction.
Explanation :
Le-Chatelier's principle : This principle states that if any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
The given reaction is:

As per question, when we are adding
then the concentration of
is increased on product side then the equilibrium will shift in the direction where decrease of concentration of
takes place. Therefore, the equilibrium will shift in the left direction.
Thus, the equilibrium will shift in the left direction.
A sodium chloride is like most of the ionic compounds
existing here on earth in which they are composed of having a high melting
point and by this, if found in underground rock deposits, they are usually in a
form of solid.