Proton plus neutron is the correct answer. Protons and neutrons have a mass of 1 and electrons have a mass of 0. So in order to find the mass of an atom you need to add the number of protons and the number of neutrons.
<h2>
Hello!</h2>
The answer is:
The new temperature will be equal to 4 K.

<h2>
Why?</h2>
We are given the volume, the first temperature and the new volume after the gas is compressed. To calculate the new temperature after the gas was compressed, we need to use Charles's Law.
Charles's Law establishes a relationship between the volume and the temperature at a gas while its pressure is constant.
Now, to calculate the new temperature we need to assume that the pressure is kept constant, otherwise, the problem would not have a solution.
From Charle's Law, we have:

So, we are given the following information:

Then, isolating the new temperature and substituting the given information, we have:




Hence, the new temperature will be equal to 4 K.

Have a nice day!
The pressure at the bottom : 19600 N/m²
<h3>Further explanation</h3>
Given
A ground water tank has its height 2m
Required
The pressure at its bottom
Solution
Hydrostatic pressure is the pressure caused by the weight of a liquid.
The weight of a liquid is affected by the force of gravity.
The hydrostatic pressure of a liquid can be formulated:

Ph = hydrostatic pressure (N / m², Pa)
ρ = density of liquid (kg / m³)
g = acceleration due to gravity (m / s²)
h = height / depth of liquid surface (m)
ρ = density of water (kg / m³) = 1000
g = acceleration due to gravity = 9.8 m/ sec²
The pressure

Answer:
ΔH = 57.04 Kj/mole H₂O
Explanation:
60ml(0.300M Ba(OH)₂(aq) + 60ml(0.600M HCl(aq)
=> 0.06(0.3)mole Ba(OH)₂(aq) + 0.60(0.6)mole HCl(aq)
=> 0.018mole Ba(OH)₂(aq) + 0.036mole HCl(aq)
=> 100% conversion of reactants => 0.018mole BaCl₂(aq) + 0.036mole H₂O(l) + Heat
ΔH = mcΔT/moles H₂O <==> Heat Transfer / mole H₂O
=(120g)(4.0184j/g°C)(27.74°C - 23.65°C)/(0.036mole H₂O)
ΔH = 57,042 j/mole H₂O = 57.04 Kj/mole H₂O