Accidental fires, explosions, and chemical and gas leaks are common at refineries. Such accidents cause higher than usual amounts of pollution, which may result in more acute exposure to pollutants and greater health impacts.
Answer:
71.372 g or 0.7 moles
Explanation:
We are given;
- Moles of Aluminium is 1.40 mol
- Moles of Oxygen 1.35 mol
We are required to determine the theoretical yield of Aluminium oxide
The equation for the reaction between Aluminium and Oxygen is given by;
4Al(s) + 3O₂(g) → 2Al₂O₃(s)
From the equation 4 moles Al reacts with 3 moles of oxygen to yield 2 moles of Aluminium oxide.
Therefore;
1.4 moles of Al will require 1.05 moles (1.4 × 3/4) of oxygen
1.35 moles of Oxygen will require 1.8 moles (1.35 × 4/3) of Aluminium
Therefore, Aluminium is the rate limiting reagent in the reaction while Oxygen is the excess reactant.
4 moles of aluminium reacts to generate 2 moles aluminium oxide.
Therefore;
Mole ratio Al : Al₂O₃ is 4 : 2
Thus;
Moles of Al₂O₃ = Moles of Al × 0.5
= 1.4 moles × 0.5
= 0.7 moles
But; 1 mole of Al₂O₃ = 101.96 g/mol
Thus;
Theoretical mass of Al₂O₃ = 0.7 moles × 101.96 g/mol
= 71.372 g
Answer:
A metal only replaces a metal, and a nonmetal only replaces a nonmetal. Only a more reactive element can replace the other element in the compound with which it reacts.
How many moles of oxygen atoms are present in 5
moles of Mg3(PO4)2
All you have to do is to create
a ratio between the molecule and the oxygen atom.
5 moles of Mg3(PO4)2 (4x2 moles
O/1 mole Mg3(PO4)2) = 40 moles of oxygen