Answer:
Ionic compound.
Explanation:
812° C is a very high melting point. Such high melting points are generally ionic compound. Ionic compounds are have very strong bond between the elements ( electrostatic bond). In order to break this bond, large amount of heat energies are needed. So, they have high melting point. Also, Ionic compound are very good conductors of electricity.
A wave looses its power as it comes to shore because it gets less deeper every second it gets closer to shore
<span>So we want to know why is there a difference between the force of gravity on the Moon and the force of gravity of the Earth. So the gravitational force between two objects depends on the masses of both objects. That can be seen from Newtons universal law of gravity. F=G*m1*m2*(1/r^2). So lets say we are holding an object of mass m=1kg on a height r=1m on the Moon and we are holding the same object on the Earth also on the same height of r=1m. The Gravitational force on the Earth will be Fg=G*M*m*(r^2) where M is the mass of the Earth. The force between the moon and that object will be Fg=G*n*m*(r^2), where n is the mass of the moon. Since mass of the Moon is much smaller than mass of the Earth, The gravitational force between the Moon and that body will be almost 6 times smaller than the gravitational force between the Earth and that body. So the correct answer is B. </span>
I think that mechanism is called a <em>"lens turret"</em>.
Answer:
<em>"the magnitude of the magnetic field at a point of distance a around a wire, carrying a constant current I, is inversely proportional to the distance a of the wire from that point"</em>
Explanation:
The magnitude of the magnetic field from a long straight wire (A approximately a finite length of wire at least for close points around the wire.) decreases with distance from the wire. It does not follow the inverse square rule as is the electric field from a point charge. We can then say that<em> "the magnitude of the magnetic field at a point of distance a around a wire, carrying a constant current I, is inversely proportional to the distance a of the wire from that point"</em>
From the Biot-Savart rule,
B = μI/2πR
where B is the magnitude of the magnetic field
I is the current through the wire
μ is the permeability of free space or vacuum
R is the distance between the point and the wire, in this case is = a