Considering a scenario in which the Sun is going to explode.
In order to escape the explosion, we depart in a spacecraft with a speed of v = 0.8c.
The star Tau Ceti is 12 life years away.
At the midpoint of the journey, the Sun as well as Tau Cetik explode. at the same instant.
Imagine a hermit who is immobile with respect to both the Sun and Tau Ceti and resides on an asteroid that is midway between both. He observes the blast waves of both explosions as our spaceship passes him. This observer concludes that the two stars blew up simultaneously because he believes both stars to remain stationary.
In the frame of reference, the Sun and Tau Ceti explode at the same time and will remain stationary.
Learn more about the frame of reference here:
brainly.com/question/10962551
#SPJ4
Answer:
As the can heats, the compressed gases will expand, causing the can to explode
Explanation:
We know that the gases in the aerosol can would assume the shape and volume of the can. The volume of the can would be the volume of the compressed gas.
As heat is added to the can, the aerosol gases would gain kinetic energy and their speed would increase. The gases would begin to expand and would require more space in order to move. This would indirectly increase the pressures between gas molecules and the walls of the can as collisions soars.
A point would eventually be reached where the gas agitation would lead to an explosion.
Overheated aerosol cans would explode.
Answer:
Pu - 239 have the smaller critical mass.
Explanation:
Critical mass is the smallest amount of certain element of mass that is needed to achieve a nuclear chain reaction early . Since Pu - 239 releases an average of 2.7 neutrons per fission as compared to U - 235 that releases 2.5 neutrons per fission. So, Pu - 239 has smaller critical mass, because Pu - 239 has a higher probability for fission and produces a large no. of neutrons per fission event. Infact of all the basic nuclear fuels, Pu - 239 has smallest critical mass. Critical mass depends on the nuclear properties of elements undergoing fission reaction. Hence, as Pu - 239 produces large no. of neutrons per fission than U - 235 and Pu - 239 has smaller critical mass.
It is simple. The higher the density, the slower the wave. If you are talking about waves that are on the Electromagnetic Spectrum (radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, gamma rays), then the speed in a vacuum is the same as the speed in the air. A solid is more dense than a liquid, so the wave will travel slower through a solid, and then vice-versa.
Hope this helps buddy :-)
20°-(-5°)=25°
Thus the temperature fell by 25°