Answer:
A. Always true
Explanation:
This is because, the buoyancy force is always present whenever and object is placed in a fluid. The magnitude of this buoyancy force is always equal to the weight of the fluid displaced by the object according to Archimedes' principle. This principle is true irrespective of whether the object floats or not. When any object is inserted in a fluid, the buoyancy force is always present irrespective of whether it floats or not.
Answer:
The magnetic field is lowest for largest distance and highest when distance is least.
Explanation:
The magnitude of magnetic field strength at a distance 'r' from a long straight wire carrying current 'I' is given as:

Now, as per question, the distance 'r' is varied while keeping the current constant in the wire.
As seen from the above formula, the magnitude of magnetic field strength for a constant current varies inversely with the distance 'r'. This means that, as the value of 'r' increases, the magnitude of magnetic field strength decreases and vice-versa.
Therefore, the magnitude of magnetic field strength is maximum when the distance 'r' is least and the magnetic field is minimum for the largest distance.
Example:
If
are the magnitudes of magnetic field strengths for distances
respectively such that
. Now, as per the explanation above, the order of magnitudes of magnetic field strength is:

Answer:
1.7 L
Explanation:
PV = nRT
If P, n, and R are constant:
V₁ / T₁ = V₂ / T₂
(2.0 L) / (293.15 K) = V / (255.15 K)
V = 1.7 L
Explanation:
If a coil of wire is placed in a changing magnetic field, a current will be induced in the wire. ... A changing magnetic field through a coil of wire therefore must induce an emf in the coil which in turn causes current to flow.