Answer:
h = 9.83 cm
Explanation:
Let's analyze this interesting exercise a bit, let's start by comparing the density of the ball with that of water
let's reduce the magnitudes to the SI system
r = 10 cm = 0.10 m
m = 10 g = 0.010 kg
A = 100 cm² = 0.01 m²
the definition of density is
ρ = m / V
the volume of a sphere
V =
V =
π 0.1³
V = 4.189 10⁻³ m³
let's calculate the density of the ball
ρ =
ρ = 2.387 kg / m³
the tabulated density of water is
ρ_water = 997 kg / m³
we can see that the density of the body is less than the density of water. Consequently the body floats in the water, therefore the water level that rises corresponds to the submerged part of the body. Let's write the equilibrium equation
B - W = 0
B = W
where B is the thrust that is given by Archimedes' principle
ρ_liquid g V_submerged = m g
V_submerged = m / ρ_liquid
we calculate
V _submerged = 0.10 9.8 / 997
V_submerged = 9.83 10⁻⁴ m³
The volume increassed of the water container
V = A h
h = V / A
let's calculate
h = 9.83 10⁻⁴ / 0.01
h = 0.0983 m
this is equal to h = 9.83 cm
Answer:
Intraductal Papillary Mucinous Neoplasm
Answer:
D) 735 J(oules)
Explanation:
Work is defined as force * distance
Force is defined as mass * acceleration
Given a mass of 15 kg and a gravitational acceleration of 9.8 m/s² since the box is being lifted up, the force being applied to the box is 15 kg * 9.8 m/s² = 147 N
Since the distance is 5 meters, the work done is 147 N * 5 m = 735 N/m = 735 J, making D the correct answer.
The net force on particle particle q1 is 13.06 N towards the left.
<h3>
Force on q1 due to q2</h3>
F(12) = kq₁q₂/r₂
F(12) = (9 x 10⁹ x 13 x 10⁻⁶ x 7.7 x 10⁻⁶)/(0.25²)
F(12) = -14.41 N (towards left)
<h3>Force
on q1 due to q3</h3>
F(13) = (9 x 10⁹ x 7.7 x 10⁻⁶ x 5.9 x 10⁻⁶)/(0.55²)
F(13) = 1.352 N (towards right)
<h3>Net force on q1</h3>
F(net) = 1.352 N - 14.41 N
F(net) = -13.06 N
Thus, the net force on particle particle q1 is 13.06 N towards the left.
Learn more about force here: brainly.com/question/12970081
#SPJ1
Sound waves actually travel much faster in water than air, but words and the direction of the noise are distorted.