Red clothes look red because they REFLECT the red light, and absorb light of other colors.
Answer:
here
Explanation:
Equilibrium is a state of a system which does not change. ... An equilibrium is considered stable (for simplicity we will consider asymptotic stability only) if the system always returns to it after small disturbances. If the system moves away from the equilibrium after small disturbances, then the equilibrium is unstable.
Answer:
A) 199.78 J
B) 9.292x10^14 J
C) 4.2x10^7 m/s
D) 0.65 m
E) 1.13x10^-8 sec
D) 2.94x10^-9 sec
Explanation:
mass of ball = 0.0580 kg
A)
If smashed at v = 83.0 m/s, KE is
KE = 0.5mv^2
= 0.5 x 0.0580 x 83.0^2
= 199.78 J
B) if returned at v = 1.79×10^8 m/s, KE will be
KE = 0.5mv^2
= 0.5 x 0.0580 x (1.79×10^8)^2
= 9.292x10^14 J
C) during Einstein's return, velocity of rabbit relative to players is
Vr = 2.21×108 m/s
Rabbit's velocity relative to ball = 2.21×10^8 - 1.79×10^8
= 4.2x10^7 m/s
D) the rabbit's speed approaches the speed of light so we consider relativistic effect. The rabbit's measured distance is
l = l°( 1 - v^2/c^2)
= 2.5(1 - 2.21/3)
= 2.5 x 0.26
= 0.65 m
E) according to the players, the time taken by the rabbit is
t = d/v = 2.5/ 2.21×10^8
= 1.13x10^-8 sec
F) the time for rabbit as measured by rabbit is relativistic
t = t°( 1 - v^2/c^2)
= 1.13x10^-8 (1 - 2.21/3)
= 1.13x10^-8 x 0.26
= 2.94x10^-9 sec
To solve this problem we will use the concepts related to hydrostatic pressure. Which determines the pressure of a body at a given depth of a liquid.
Mathematically this can be described as

Here
= Density
g = Gravity
h = Height (Depth)
If we replace the values given in the equation we will have to


Therefore the pressure at the bottom will be 9.8kPa