<h2>The different forces acting on the ball while its in air</h2>
Amy throws a softball through the air. Applied, drag and gravitational forces are acting on the ball while it’s in the air. The softball experiences force as a result of Amy’s throw. As the ball moves, it experiences from the air it passes through.
It also experiences a downward pull because earth has the property to attract everything which is on the earth towards it. The ball is moving in the air but earth applies force on the ball to get back on the ground. Hence, in this way, gravitational force applies.
There is also a drag force which results due to friction that is present in the air. It resist to move ball in the air and there will also be applied force which is given by a person who throws by applying force.
Acceleration = (change in speed) / (time for the change)
change in speed = (ending speed) - (starting speed)
change in speed = (10 m/s) - (2 m/s) = 8 m/s
Acceleration = (8 m/s) / (4 sec)
Acceleration = (8/4) (m/s²)
<em>Acceleration = 2 m/s²</em>
There is no certain time on how long it takes. Because the factors will always be different and the factors heavily affect the evaporation time. Some factors include: humidity, heat, how the sun is visible (whether clouds are covering it or not)
Work is calculated by multiplying force by the distance that the object had moved. The applied force is 60 N, moving the object by 10 m. Thus, the work does is 600 J. For the friction force which is equal to,
100N x 0.250 = 25.0 N
the work done is,
W = (60 N - 25 N) x 10 m = 350 J
The kinetic energy of the box can be equated to this force. Thus, the answer is also 350 J.