Your question can be found online! Just draw one of these diagrams
You can solve this problem through dimensional analysis.
First, find the molar mass of NaHCO3.
Na = 22.99 g
H = 1.008 g
C = 12.01 g
O (3) = 16 (3) g
Now, add them all together, you end with with the molar mass of NaHCO3.
22.99 + 1.008 + 12.01 + 16(3) = 84.008 g NaHCO3. This number means that for every mole of NaHCO3, there is 84.008 g NaHCO3. In simpler terms, 1 mole NaHCO3 = 84.008 g NaHCO3.
After finding the molar mass of sodium bicarbonate, now you can use dimensional analysis to solve for the number of moles present in 200. g of sodium bicarbonate.

Cross out the repeating units which are g NaHCO3, and the remaining unit is mole NaHCO3
200. * 1 = 200
200/ 84.008 = 2.38
Notice how there are only 3 sig figs in the answer. This is because the given problem only gave three sig figs.
Your final answer is 2.38 mol NaHCO3.
Answer : The mass of
required is 18.238 grams.
Explanation : Given,
Mass of
= 83.10 g
Molar mass of
= 146 g/mole
Molar mass of
= 256.52 g/mole
The balanced chemical reaction is,

First we have to determine the moles of
.

Now we have to determine the moles of
.
From the balanced chemical reaction we conclude that,
As, 8 moles of
produced from 1 mole of 
So, 0.569 moles of
produced from
mole of 
Now we have to determine the mass of
.


Therefore, the mass of
required is 18.238 grams.
Answer:
Explanation:
Look up the density of the material the object is made of in kg/m³.
Measure the volume of the object in m³.
Multiply the density by the volume.
You will then have the mass of the object in kg.