Use a calculator to find the cube root of positive or negative numbers. Given a number x<span>, the cube root of </span>x<span> is a number </span>a<span> such that </span><span>a3 = x</span><span>. If </span>x<span> positive </span>a<span> will be positive, if </span>x<span> is negative </span>a<span> will be negative. Cube roots is a specialized form of our common </span>radicals calculator<span>.
</span>Example Cube Roots:<span>The 3rd root of 64, or 64 radical 3, or the cube root of 64 is written as \( \sqrt[3]{64} = 4 \).The 3rd root of -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span><span>
</span>This was not copied from a website or someone else. This was from my last year report.
<span>
f -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span>
Answer: (A) 
(B) Length varies between 1 and 150
(C) Largest area is 22500ft²
Step-by-step explanation: Suppose length is l and width is w.
The rectangular garden has perimeter of 600ft, which is mathematically represented as

Area of a rectangle is calculated as

Now, we have a system of equations:


Isolate w, so we have l:

w = 300 - l
Substitute in the area equation:
A = l(300 - l)
A = 300l - l²
(A) <u>Function of area in terms of length is given by </u><u>A = 300l - l²</u>
(B) The practical domain for this function is values between 1 and 150.
(C) For the largest area, we need to determine the largest garden possible. For that, we take first derivative of the function:
A' = 300 - 2l
Find the values of l when A'=0:
300 - 2l = 0
2l = 300
l = 150
Replace l in the equation:
w = 300 - 150
w = 150
Now, calculate the largest area:
A = 150*150
A = 22500
<u>The largest area the fence can enclose is </u><u>22500ft².</u>
Answer:
The rate at which energy is used is called power.
Step-by-step explanation:
Answer:
0.5<2-√2<0.6
Step-by-step explanation:
The original inequality states that 1.4<√2<1.5
For the second inequality, you can think of 2-√2 as 2+(-√2).
Because of the "properties of inequalities", we know that when a positive inequality is being turned into a negative, the numbers need to swap and become negative. So, the original inequality becomes -1.5<-√2<-1.4. (Notice how the √2 becomes negative, too). This makes sense because -1.5 is less than -1.4.
Using our new inequality, we can solve the problem. Instead of 2+(-√2), we are going to switch "-√2" with both possibilities of -1.5 and -1.6. For -1.5, we would get 2+(-1.5), or 0.5. For -1.4, we would get 2+(-1.4), or 0.6.
Now, we insert the new numbers into the equation _<2-√2<_. The 0.5 would take the original equation's "1.4" place, and 0.6 would take 1.5's. In the end, you'd get 0.5<2-√2<0.6. All possible values of 2-√2 would be between 0.5 and 0.6.
Hope this helped!
Answer:
$162000
Step-by-step explanation:
8% of 10000
10000÷100=100×8=800
10000+800=10800
10800×15=162000