<h3>
Answer: B) 2</h3>
=========================================================
Explanation:
Take away the four white small squares on the left side. To balance things out, you have to add 4 black squares to the right side.
Also, take away the two white long rectangles from the right side. To balance this out, you have to add 2 gray long rectangles to the left side.
You should have:
- 5 gray rectangles, and no squares (of any color) on the left side
- 10 black squares, no long rectangles (of any color), on the right side
From here you'll group up the 10 black squares so that you'll have 2 black squares per gray rectangle.
This means the solution is 2.
-------------------------------------
If you're curious about the algebraic way to solve, then you could do this:
3x-4 = -2x+6
3x+2x = 6+4
5x = 10
x = 10/5
x = 2
This method doesn't require us to use the visual model.
Let <em>a</em> and <em>b</em> be the two numbers. Then
<em>a</em> + <em>b</em> = -4
<em>a b</em> = -2
Solve the second equation for <em>b</em> :
<em>b</em> = -2/<em>a</em>
Substitute this into the first equation:
<em>a</em> - 2/<em>a</em> = -4
Multiply both sides by <em>a</em> :
<em>a</em>² - 2 = -4<em>a</em>
Move 4<em>a</em> to the left side:
<em>a</em>² + 4<em>a</em> - 2 = 0
Use the quadratic formula to solve for <em>a</em> :
<em>a</em> = (-4 ± √(4² - 4(-2))) / 2
<em>a</em> = -2 ± √6
If <em>a</em> = -2 + √6, then
-2 + √6 + <em>b</em> = -4
<em>b</em> = -2 - √6
In the other case, we end up with the same numbers, but <em>a</em> and <em>b</em> are swapped.
Answer:
infinitely many
Step-by-step explanation:
12x + 1 = 3(4x + 1) - 2
Distribute
12x + 1 = 12x + 3 - 2
Combine like terms
12x+1 = 12x +1
Subtract 12x from each side
1 =1
Since this is always true, we have infinite solutions
Some of the possible points using this equation are...
(2,14)
(1,10)
(0,6)
(-1,2)
(-2,-2)