Answer: I dont really know
Explanation:
The formula of compound is LiClO4.3H2O
<em><u>calculation</u></em>
- <em><u> </u></em>find the mole of each element
that is moles for Li,Cl,O and that of H2O
- moles = % composition/ molar mass
For Li = 4.330/ 6.94 g/mol= 0.624 moles
Cl=22.10/35.5=0.623 moles
39.89/16 g/mol =2.493 moles
H20= 33.69/18 g/mol= 1.872 moles
- find the mole ratio by dividing each moles by smallest number of mole ( 0.624 moles)
that is for Li= 0.624/0.623= 1
Cl= 0.623/0.623=1
O = 2.493/0.623 =4
H2O= 1.872/0.623=3
<h3>Therefore the formula=LiClO4.3H2O</h3><h3 />
Answer:
Decomposition Reaction
Explanation:
If you are referring to what type of reaction that occurred then the answer would be decomposition reaction.
This is a chemical reaction where one reactant is broken down into two or more products.
REACTANT → PRODUCT
AB → A + B
The products can be two or more elements or two or more compounds, depending on what was decomposed.
Answer:
pH= 11.49
Explanation:
Ethanolamine is an organic chemical compound of the formula; HOCH2CH2NH2. Ethanolamine, HOCH2CH2NH2 is a weak base.
From the question, the parameters given are; the concentration of ethanolamine which is = 0.30M, pH value= ??, pOH value= ??, kb=3.2 ×10^-5
Using the formula below;
[OH^-]=√(kb×molarity)----------------------------------------------------------------------------------------------------------(1)
[OH^-] =√(3.2×10^-5 × 0.30M)
[OH^-]= √(9.6×10^-6)
[OH^-]=3.0984×10^-3
pOH= -log[OH^-]
pOH= -log 3.1×10^-3
pOH= 3-log 3.1
pH= 14-pOH
pH= 14-(3-log3.1)
pH= 11+log 3.1
pH= 11+ 0.4914
pH= 11.49
(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams
(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams
(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams
(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams
(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams
From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.