v = speed of the source of sound or the train towards the listener or switchman = 40 m/s
V = actual speed of sound = 340 m/s
f = actual frequency of sound as emitted from source or the train = 1000 Hz
f' = frequency as observed by the listener or by switchman = ?
Using Doppler's law , frequency observed by a listener from a source moving towards it is given as
f' = V f /(V - v)
inserting the values
f' = 340 x 1000 /(340 - 40)
f' = 340 x 1000/300
They'll still be magnets, but they'll never be able to touch each other where they were cut.
I hope this helps you! :-)
Answer:
d = 2,042 10-3 m
Explanation:
The laser diffracts in the circular slit, so the process equation is
d sin θ= m λ
The first diffraction minimum occurs for m = 1
We can use trigonometry in the mirror
tan θ = Y / L
Where L is the distance from the Moon to Earth
Since the angle is extremely small
tan θ = sin θ / cos θ
Cos θ = 1
tant θ = sin θ = y / L
We replace
d y / L = λ
d = λ L / y
Let's calculate
d = 532 10⁻⁹ 3.84 10⁶/1 10³
d = 2,042 10-3 m