Solve for Speed: 16+20=36 km in 11 hrs
Answer: speed =
3.27273 kilometers per hourTo solve for speed or rate use the formula for speed, s = d/t which means speed equals distance divided by time.
<span>speed = distance/time</span>
From the calculation, the gravitational force of attraction is 1.33 * 10^-14 N.
<h3>What is the gravitational force?</h3>
The gravitational force is an attractive force that acts between any two masses.
It is given by;
F = Gm1m2/r^2
F = 6.67 * × 10−11 * 2.5 * 5/(250)^2
F = 83.4 × 10−11 /62500
F= 1.33 * 10^-14 N
Learn more about gravitational force:brainly.com/question/12528243
#SPJ1
Answer:
1.6 x 10⁻¹⁹ C
Explanation:
Let us arrange the charges in the ascending order and round them off as follows :-
1.53 x 10⁻¹⁹ C → 1.6x 10⁻¹⁹ C
3.26 x 10⁻¹⁹C → 3.2 x 10⁻¹⁹ C
4.66 x 10⁻¹⁹C → 4.8 x 10⁻¹⁹ C
5.09 x 10⁻¹⁹C → 4.8 x 10⁻¹⁹ C
6.39 x 10⁻¹⁹C → 6.4 x 10⁻¹⁹ C
The rounding off has been made to facilitate easy calculation to come to a conclusion and to accommodate error in measurement.
Here we observe that
2 nd charge is almost twice the first charge
3 rd and 4 th charges are almost 3 times the first charge
5 th charge is almost 4 times the first charge.
This result implies that 2 nd to 5 th charges are made by combination of the first charge ie if we take e as first charge , 2nd to 5 th charges can be written as 2e, 3e ,3e and 4e. Hence e is the minimum charge existing in nature and on electron this minimum charge of 1.6 x 10⁻¹⁹ C exists.
Answer:
Differences
microscopic refers to substances visible to the naked eye
macroscopic are substances invisible to naked eye
Similarities
both refer to different scales that are useful to determining the size to different compounds.
Explanation:
Ima find more
Answer:
20 N/m
Explanation:
From the question,
The ball-point pen obays hook's law.
From hook's law,
F = ke............................ Equation 1
Where F = Force, k = spring constant, e = compression.
Make k the subject of the equation
k = F/e........................ Equation 2
Given: F = 0.1 N, e = 0.005 m.
Substitute these values into equation 2
k = 0.1/0.005
k = 20 N/m.
Hence the spring constant of the tiny spring is 20 N/m