Answer:
The tube should be held vertically and perpendicular to the ground.
Explanation:
Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:
Reasoning:
The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.
Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.
So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.
hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.
Answer:
Troposphere
High-pressure areas form due to downward motion through the troposphere, the atmospheric layer where weather occurs.
Answer:
The horizontal component of the velocity is 21.9 m/s.
Explanation:
Please see the attached figure for a better understanding of the problem.
Notice that the vector v and its x and y-components (vx and vy) form a right triangle. Then, we can use trigonometry to find the magnitude of vx, the horizontal component of the velocity.
To find vx, let´s use the following trigonometric rule of right triangles:
cos α = adjacent / hypotenuse
cos 5.7° = vx / 22 m/s
22 m/s · cos 5.7° = vx
vx = 21.9 m/s
The horizontal component of the velocity is 21.9 m/s.
Answer:
0.2448 point²
Explanation:
1 gry = 1/10 line
1 line = 1/12 inch
=> 1 gry in inches = 1/10 * 1/12 = 1/120 inch
=> 1 inch = 120 gry
1 point = 1/72 inch
=> 1 inch = 72 points
Therefore,
120 gry = 72 points
=> 1 gry = 3/5 point
Therefore,
1 gry² = (3/5)² point²
1 gry² = 9/25 point²
This means that 0.68 gry² will be:
0.68 gry² = 0.68 * 9/25 point²
=> 0.68 gry² = 0.2448 point²