With the given problem you gave here, I can't answer the question because I need more details. Luckily, I found a similar problem that's provided with a diagram and a table shown in the attached picture.
This test is called the Benedict's test which is used as test for presence of sugars. If the solution contains sugar, like glucose, the solution would turn from blue to red. If not, it would stay blue.
<em>Therefore, the correct results would be that in row 3.</em>
When soda companies add carbon dioxide gas to a soda mixture, the water is very cold so it can hold a lot of gas. They also use pressure to put more gas in the water than it could normally hold at that temperature.
But when a soda can warms up a bit or when the can is shaken, that extra gas is really ready to come out. So when you open up the can and release the pressure, splooosh!
Answer:
The correct answer is 10.939 mol ≅ 10.94 mol
Explanation:
According to Avogadro's gases law, the number of moles of an ideal gas (n) at constant pressure and temperature, is directly proportional to the volume (V).
For the initial gas (1), we have:
n₁= 1.59 mol
V₁= 641 mL= 0.641 L
For the final gas (2), we have:
V₂: 4.41 L
The relation between 1 and 2 is given by:
n₁/V₁ = n₂/V₂
We calculate n₂ as follows:
n₂= (n₁/V₁) x V₂ = (1.59 mol/0.641 L) x 4.41 L = 10.939 mol ≅ 10.94 mol
Answer:
C) quartz
Explanation:
Quartz is a common mineral. Also, quartz isn't a metallic substance. I'm hoping that this helps :)
Answer: a disturbance that transfers energy.
Explanation: