Magnetism: separates magnetic materials from non-magnetic. 3rd diagram
evaporation: separates a soluble solid by boiling off. 4th diagram
filtration: separates insolube solid from a liquid. 1st diagram
distillation: separates liquids with different boiling points. 5th diagram
chromatography: separates liquids of different colours. 2nd diagram
1. two or mor, chemically bonded
2. purify
3. magnetism, evaporation, filtration, distillation, chromatography
The elements in each group have the same number of electrons in the outer orbital. Or also called valence electrons. Khan academy has a great video online explaining why this happens. (It only happens for main group elements). Here is a link (sorry you can’t click it in Brainly) https://www.khanacademy.org/science/chemistry/periodic-table/copy-of-periodic-table-of-elements/v/periodic-table-valence-electrons. Feel free to message me for a better explanation, I would explain now but I’m not sure how much you know about this. If you know how to write an electron configuration you can see how all the electron configurations for the same group (not the transitional metals only the main groups) have the same number of valence electrons. I hope that helped, sorry I was vague about the explanation :)
Answer:
Yes
Explanation:
Yes, A substance can be a lewis acid without being a Bronsted-Lowery acid because there are some substances which cannot donate protons(Bronsted-Lowery acid) but can accept a pair of electron.
<u><em>For Example:</em></u>
Let us take the example of BF₃
BF₃ contains no proton so it is not a Bronsted Lowery Acid
However, BF₃ has an incomplete octet with 6 electrons. It needs an electron pair to complete its octet. It accepts a pair of electron to become a Lewis Acid
Answer:
A proton carries a positive charge and an electron carries a negative charge
Explanation:
is this what u want???
Answer:
this answer is hard cant answer