The principle states that the lowest-energy orbitals are filled first, followed ... electron configuration The arrangement of electrons in an atom, molecule, or other ... and two valence electrons (electrons in the outer shell), respectively; because of this, ... mechanics, a certain energy is associated with each electron configuration.
The amplitude of a wave is the distance between a point on one wave and the identical point on the next wave. The period and wavelength of a wave are inversely proportional.
Another product: CO₂
<h3>Further explanation</h3>
Given
Reaction
2C₄H₁₀ + 13O₂⇒ 8__+ 10H₂O
Required
product compound
Solution
In the combustion of hydrocarbons there can be 2 kinds of products
If there is excess Oxygen, you will get Carbon dioxide(CO₂) and water in the product
If Oxygen is low, you'll get Carbon monoxide(CO) and water
Or in other ways, we can use the principle of the law of conservation of mass which is also related to the number of atoms in the reactants and in the products
if we look at the reaction above, there are C atoms on the left (reactants), so that in the product there will also be C atoms with the same number of C atoms on the left
2C₄H₁₀ + 13O₂⇒ 8CO₂+ 10H₂O
The question is missing the graphics required to answer which I have attached as an image.
There are four different representations of the orientation of water molecules around chloride anion. Let's first analyze the water molecule.
We have H-O-H as the structure of water. The oxygen atom is more electronegative than the hydrogen atoms, which results in a partial positive charge on the hydrogen atoms and a partial negative charge on the oxygen atom.
The chloride anion is a negative charge. Therefore, the water molecules should orient themselves with the hydrogen atoms facing the chlorine atom as the partial positive charge on the hydrogen atoms will be attracted to the negative charge of the chlorine atom.
The correct representation is shown in graph 3 which shows all hydrogen atoms facing the chlorine anion.