The alkali metals can't exist alone in nature because of incomplete outermost shell of alkali metals.
<h3>What are the properties of alkali metals?</h3>
The alkali metals have the high thermal and electrical conductivity. It has high lustre, ductility, and malleability as compared to other materials. Each alkali metal atom has one electron in its outermost shell which make more reactive.
So we can conclude that the alkali metals can't exist alone in nature because of incomplete outermost shell of alkali metals.
Learn more about metal here: brainly.com/question/25597694
#SPJ1
Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
Answer:
From what i've learned so far, the correct answer is "Heat at a constant Pressure" or "Specific Heat"
Explanation:
Hope this helps!
A. High intermolecular forces of attraction. If there are high intermolecular forces, the molecules will need large energies to escape into the liquid. The substance will nave a high melting point.
The other options are <em>incorrect </em>because they are <em>weak force</em>s. They would cause <em>low melting points</em>.