Answer:
its all black I cant see the image can you re upload it
Explanation:
Given data:
* The mass of the ball is 2 kg.
* The gravitational field strength at the surface of planet X is 5 N/kg.
Solution:
The weight of the ball on the planet X is,

where m is the mass of ball, a is the gravitational field strength,
Substituting the known values,

Thus, the weight of the ball on the surface of planet X is 10 N.
Answer:
A) coil A
Explanation:
According to Faraday, Induced emf is given as;
E.M.F = ΔФ/t
ΔФ = BACosθ
where;
ΔФ is change in magnetic flux
θ is the angle between the magnetic field, B, and the normal to the loop of area A
A is the area of the loop
B is the magnetic field
From the equation above, induced emf depends on the strength of the magnetic field.
Both coils have the same area and are oriented at right angles to the field.
Coil A has a magnetic field strength of 10-T which is greater than 1 T of coil B, thus, coil A will have a greater emf induced in it.
To solve this problem we will apply the concepts related to Ohm's law and Electric Power. By Ohm's law we know that resistance is equivalent to,

Here,
V = Voltage
I = Current
While the power is equivalent to the product between the current and the voltage, thus solving for the current we have,


Applying Ohm's law


Therefore the equivalent resistance of the light string is 