Answer:
Explanation:
Gravitational force between two objects having mass m₁ and m₂ at a distance R
F = G m₁ m₂ / R²
Force between baby and father F₁ = 6.67x10⁻¹¹ x 4.1 x 120 / .18²
= 1.01 x 10⁻⁶ N
b )
Force between baby and Jupiter
F₂ = 6.67x10⁻¹¹ x 1.9x 10²⁷ x 4.1 / ( 6.29 x 10¹¹ )²
= 1.31 x 10⁻⁶ N
c )
Ratio = 1.01 / 1.31
= .77
Answer:
A) if each astronaut breathes about 500 cm³, the total volume of air breathed in a year is 14716.8m³.
B) The Diameter of this spherical space station should be 30.4m
Explanation:
The breathing frequency (according to Rochester encyclopedia) is about 12-16 breath per minute. if we take the mean value (14 breath per minute), we can estimate the total breaths of a person along a year:

If we multiply this for the number of people in the station and the volume each breath needs, we obtain the volume breathed in a year.
The volume of a sphere is:

So the diameter is:
![D=2r=2\sqrt[3]{\frac{3V_{sph}}{4\pi}} =30.4m](https://tex.z-dn.net/?f=D%3D2r%3D2%5Csqrt%5B3%5D%7B%5Cfrac%7B3V_%7Bsph%7D%7D%7B4%5Cpi%7D%7D%20%3D30.4m)
Explanation:
The reading on the scale is
W = m(g + a)
= (77 kg)(9.8 m/s^2 + 2 m/s^2)
= 908.6 N
Answer: The first one
Explanation: I think it's the first one because it says what is the "least" gravitational potential energy story between the prairie dog and Earth that said resting in its borrow is using less energy
Answer:
a) K = 2/3 π G m ρ R₁³ / R₂
, b) U = - G m M / r
Explanation:
The law of universal gravitation is
F = G m M / r²
Part A
Let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / R₂
G m M / R₂² = m v² / R₂
v² = G M / R₂
They give us the density of the planet
ρ = M / V
V = 4/3 π R₁³
M = ρ V
M = ρ 4/3 π R₁³
v² = 4/3 π G ρ R₁³ / R₂
K = ½ m v²
K = ½ m (4/3 π G ρ R₁³ / R₂)
K = 2/3 π G m ρ R₁³ / R₂
Part B
Potential energy and strength are related
F = - dU / dr
∫ dU = - ∫ F. dr
The force was directed towards the center and the vector r outwards therefore there is an angle of 180º between the two cos 180 = -1
U- U₀ = G m M ∫ dr / r²
U - U₀ = G m M (- r⁻¹)
We evaluate for
U - U₀ = -G m M (1 /
- 1 /
)
They indicate that for ri = ∞ U₀ = 0
U = - G m M / r