Answer:
angular speed of both the children will be same
Explanation:
Rate of revolution of the merry go round is given as
f = 4.04 rev/min
so here we have

here we know that angular frequency is given as



now this is the angular speed of the disc and this speed will remain same for all points lying on the disc
Angular speed do not depends on the distance from the center but it will be same for all positions of the disc
Answer;
- Line segment
Explanation;
"from earth to moon" implies endpoints at both locations and it is thus a line segment
A line extends forever in both directions, a line segment is just part of a line. It has two endpoints, and a ray starts at one point and continues on forever in one direction.
Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
Given that,
The acceleration of gravity is -9.8 m/s²
Initial velocity, u = 39.2 m/s
Time, t = 2 s
To find,
The final velocity of the shot.
Solution,
Let v is the final velocity of sling shot. Using first equation of motion to find it.
v = u +at
Here, a = -g
v = u-gt
v = (39.2)-(9.8)(2)
v = 19.6 m/s
So, its velocity after 2 seconds is 19.6 m/s.
Think about how each of noise, heat, visible light, radiation and atmospheric shock waves travel. Which ones require air particles to travel?
A vacuum has no air particles within it, it is completely empty.
Therefore, any of the above that requiring particles to travel will not be able to cross it and the observer will not experience it.