Answer: Some challenges that I could see would be the walls, possibly a moat, tar, and the towers.
Explanation: The wall is obliviously a main problem, trying to get over it or through it is a difficult challenge. The moat (if it has one) means that there is more than likely only one way to get in or out. If it does have tar it means that the attackers are going to be put in a "sticky situation" And finally the towers, they have people at the top shooting arrows down at you, or throwing things at you.
<span><span>Fuel Extraction and Production – Water is a critical resource for the drilling and mining of natural gas, coal, oil, and uranium. In many cases, fuel extraction also produces wastewater, as with natural gas and oil wells and coal slurry ponds.
</span><span>
Fuel Refining and Processing – Oil, uranium, and natural gas all require refining before they can be used as fuels – a process that uses substantial amounts of water.
</span><span>
Fuel Transportation – Water is used to transport coal through slurries — pipelines of finely ground coal mixed with water — and to test energy pipelines for leaks.[1]</span><span>Emissions Control – Many thermoelectric power plants emit sulfur, mercury, particulates, carbon dioxide, and other pollutants, and require pollution control technologies. These technologies also require significant amounts of water to operate.</span></span>
<span>Due that we already know the horizontal cross-sectional area of the ship, which is 2800 m2 and we are going to understand that value keeps constant for the whole 9.5 of height of the ship from the waterline till the new waterline after unloading, then we just need to calculate the volume as follows:
V = A * H , where V is volume, A is area and H is height
V= 2,800 * 9.5 = 26,600 m3
So this volum of 26,600 cubic meters is the volum of freshwater delivered in the island.</span>
Answer:
The answer is below
Explanation:
a) The initial velocity (u) = 24 m/s
We can solve this problem using the formula:
v² = u² - 2gh
where v = final velocity, g= acceleration due to gravity = 9.8 m/s², h = height.
At maximum height, the final velocity = 0 m/s
v² = u² - 2gh
0² = 24² - 2(9.8)h
2(9.8)h = 24²
2(9.8)h = 576
19.6h = 576
h = 29.4 m
b) The time taken to reach the maximum height is given as:
v = u - gt
0 = 24 - 9.8t
9.8t = 24
t = 2.45 s
The total time needed for the apple to return to its original position = 2t = 2 * 2.45 = 4.9 s