Answer:
The total current supplied by the source of voltage = 10.29 A
Explanation:
We have a 14-Ω coffee maker and a 14-Ω frying pan are connected in series.
Effective resistance = 14 + 14 = 28Ω
Now we have 28Ω and 20Ω in parallel
Effective resistance

So we have resistor with 11.67Ω in a 120 V source of voltage.
We have equation V = IR
Substituting
120 = I x 11.67
I = 10.29 A
The total current supplied by the source of voltage = 10.29 A
Answer:
(a) 161.57 N
(b) 0.958 m/s^2
Explanation:
Force applied, F = 220 N
mass of crate, m = 61 kg
μ = 0.27
(a) The magnitude of the frictional force,
f = μ N
where, N is the normal reaction
N = m x g = 61 x 9.81 = 598.41 N
So, the frictional force, f = 0.27 x 598.41
f = 161.57 N
(b) Let a be the acceleration of the crate.
Fnet = F - f = 220 - 161.57
Fnet = 58.43 N
According to newton's second law
Fnet = mass x acceleration
58.43 = 61 x a
a = 0.958 m/s^2
Thus, the acceleration of the crate is 0.958 m/s^2.
Answer: This is called the Doppler effect, where waves shift frequency and wavelength as the source travels towards you (higher frequency, shorter wavelength) or away from you (lower frequency, longer wavelength)
Explanation:
hoped this helped have a good day :)
Answer:
Law of conservation of momentum states that. For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
Explanation:
Hope it helps
I think we will use the law of conservation of linear momentum;
M1V1 = M2V2
M1 = 4 kg (mass of the water balloon launcher)
V1=?
M2= 0.5 kg ( mass of the balloon)
V2 = 3 m/s
Therefore; 4 V1 = 0.5 × 3
4V1= 1.5
V1= 1.5/4
= 0.375 m/s