1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadusha1986 [10]
3 years ago
12

When the Sun is directly overhead, the intensity of sunlight reaching the ground is about 1000 W/m^{2} 2 . The Earth has a radiu

s of about 6400 km. What is the total power associated with sunlight shining on the Earth?

Physics
1 answer:
Hunter-Best [27]3 years ago
6 0

Answer:

The total power associated with sunlight shining on the Earth is 8.04 × 10^10W

Explanation: Please see the attachment below

You might be interested in
A football punter accelerates a .55 kg football
Ronch [10]

Answer:

17.6 N

Explanation:

The force exerted by the punter on the football is equal to the rate of change of momentum of the football:

F=\frac{\Delta p}{\Delta t}

where

\Delta p is the change in momentum of the football

\Delta t=0.25 s is the time elapsed

The change in momentum can be written as

\Delta p = m(v-u)

where

m = 0.55 kg is the mass of the football

u = 0 is the initial  velocity (the ball starts from rest)

v = 8.0 m/s is the final velocity

Combining the two equations and substituting the values, we  find the force exerted on the ball:

F=\frac{m(v-u)}{\Delta t}=\frac{(0.55)(8.0-0)}{0.25}=17.6 N

5 0
4 years ago
NEED HELP TODAY
Free_Kalibri [48]

Answer:

I am pretty sure it is B My friend hope you are well

Explanation:

6 0
3 years ago
Read 2 more answers
On the earth, when an astronaut throws a 0.250-kg stone vertically upward, it returns to his hand a time T later. On planet X he
Pachacha [2.7K]

Answer:

d) g/2

Explanation:

We need to use one of Newton's equations of motion to find the position of the stone at any time t.

x(t) = x₀(t) + ut - ¹/₂at²

Where

x₀(t) = initial position of the stone.

x(t) - x₀(t) = distance traveled by the stone at any time.

u = initial velocity of the stone

a = acceleration of the stone

t = time taken

On both planets, before the stone was thrown by the astronaut, x = 0 and t = 0.

=> 0 = x₀(t)

=> x₀(t) = 0

On earth, when the stone returns into the hand of the astronaut at time T on earth, x = 0.

=> 0 = 0 + uT - ¹/₂gT² (a = g)

=> uT = ¹/₂gT²

=> g = 2u/T

On planet X, when the stone returns into the hand of the astronaut, time = 2T , x = 0.

=> 0 = 0 + u(2T) - ¹/₂a(2T)²

=> 2uT = 2aT²

=> a = u/T

By comparing we see that a = g/2.

5 0
3 years ago
A wheel of mass 4kg is pulled up a plane inclined at 30° to the horizontal by a force of 45N applied to the axle and parallel to
Len [333]

Answer:

v = 10 m/s

Explanation:

Let's assume the wheel does not slip as it accelerates.

Energy theory is more straightforward than kinematics in my opinion.

Work done on the wheel

W = Fd = 45(12) = 540 J

Some is converted to potential energy

PE = mgh = 4(9.8)12sin30 = 235.2 J

As there is no friction mentioned, the remainder is kinetic energy

KE = 540 - 235.2 = 304.8 J

KE = ½mv² + ½Iω²

ω = v/R

KE = ½mv² + ½I(v/R)² = ½(m + I/R²)v²

v = √(2KE / (m + I/R²))

v = √(2(304.8) / (4 + 0.5/0.5²)) = √101.6

v = 10.07968...

5 0
3 years ago
A 110 kg hoop rolls along a horizontal floor so that the hoop's center of mass has a speed of 0.220 m/s. How much work must be d
Softa [21]

Answer:

the work that must be done to stop the hoop is 2.662 J

Explanation:

Given;

mass of the hoop, m = 110 kg

speed of the center mass, v = 0.22 m/s

The work that must be done to stop the hoop is equal to the change in the kinetic energy of the hoop;

W = ΔK.E

W = ¹/₂mv²

W = ¹/₂ x 110 x 0.22²

W = 2.662 J

Therefore, the work that must be done to stop the hoop is 2.662 J

6 0
3 years ago
Other questions:
  • Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, t
    5·1 answer
  • Consider an object moving in the plane whose location at time t seconds is given by the parametric equations: x(t)=5cos(πt) y(t)
    7·1 answer
  • What is 52,427 equal in scientific notation
    14·2 answers
  • Charged particles posses a region of influence also called a (an)
    7·1 answer
  • A ball is launched horizontally from the top of a cliff with an initial velocity of 20 m/s. If the ball strikes the ground after
    13·1 answer
  • A box moving on a horizontal surface with an initial velocity of 20 m/s slows to a stop over a time period of 5.0 seconds due so
    15·1 answer
  • Write and solve a MA or efficiency problem
    13·1 answer
  • What parts of an atom can change during a nuclear reaction that cannot change during a chemical reaction? Question 15 options: A
    5·2 answers
  • NEED HELP ASAP!!!!!!!!!!!!!
    14·2 answers
  • When conducting an experiment, a scientist should exhibit all of these traits EXCEPT
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!