Do you have the answer for this question? so i can provide u solution more effectively
Answer: first and third.
Explanation:
An equation is dimensionally correct if the units are the same in both sides of the equation.
first, let's define the units used:
{m} = kg
{v} = m/s
{F} = kg*m/s^2
{x} = m
{t} = s
{a} = m/s^2
Now, let's analyze each option:
1) m*v/t = F
in the left side the units are:
{m}*{v}/{t} = kg*(m/s)*(1/s) = kg*m/s^2
And as is written above, these are the units of F, so this is correct.
2) x*v^2 = F*(x^3/x^2)
This is more trivial, in the right side we can see an F, that has mass units (kg) and in the left side we have x and v, and we know that none of these have mass units, so this expression is not correct.
3) xt= vt^2+at^3
the units in the right side are:
{x}*{t] = m*s
in the right side are:
{v}*{t}^2 + {a}*{t}^2 = (m/s)*s^2 + (m/s^2)*s^3 = m*s + m*s
So in both sides of the equation we have the same units, then this equation is dimensionally correct.
One of the characteristics of the luminous gas clouds is that they do not have direct affectation by some type of external electric or magnetic fields.
In addition, we must bear in mind that color is a variable that is depending on the gas in the mixture. Therefore its relationship with spectroscopy allows us to deduce that scientists take advantage of the wavelength spectrum to know the type of composition of one of the clouds. The speed of a cloud is measured by determining the Doppler shift of its spectral lines. From wine's law, wavelength of light emitting from the object depends on temperature of object
Therefore the correct option is D
I feel like it expresses time, but if there is another answer and they say otherwise, then they are probably right.
Hope this helps!