Answer:
Number of points scored in the first half of the match is 24 points.
Step-by-step explanation:
Total point scored in the volleyball game = 32
Let us assume the points scored in the first half = m
and the point scored on the second half = 2/8 of (Total points)
= 
⇒ The number of points s cored in the second - half = 8 points
Now, Points in FIRST half+ Points in SECOND half= Total Points
⇒ m+ 8 = 32
or, m = 32 - 8 = 24
⇒ m = 24
Hence, the number of points scored in the first half is 24 points.
First term ,a=4 , common difference =4-7=-3, n =50
sum of first 50terms= (50/2)[2×4+(50-1)(-3)]
=25×[8+49]×-3
=25×57×-3
=25× -171
= -42925
derivation of the formula for the sum of n terms
Progression, S
S=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)
S=n/2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n/2{a1+[a1+(n−1)d]}
S=n/2[2a1+(n−1)d]
Answer:
18
Step-by-step explanation:
Slope intercept form is y = mx + b.
Y = coordinate y.
M = Slope
X = coordinate x.
B = y-intercept.
Slope formula: (y2-y1) / (x2-x1)
Plug in: (-1 - 7) / (4 - 2) = -4.
We can just insert the pair (2,7) as our x and y to solve b.
7 = -4(2) + b.
Solve for b.
7 = -8 + b.
-b = -8 -7
-b = -15
b = 15.
Original equation:
y = mx + b
y = -4x + 15