Answer: the total number of shirts in all the boxes is 38500
Step-by-step explanation:
A factory packs 25 small shirts,30 medium shirt sand 15 large shirts in a box. This means that the total number of shirts that is packed into a box would be the sum of the small shirt, medium shirt and large shirt. It becomes
25 + 30 + 15 = 70
If 550 boxes are packed with these shirts, it means that the total number of shirts in all the boxes would be
550 × 70 = 38500
The sign would be negative because there is an odd number of negatives. If there were an even number of negatives it would be positive.
Multiply -5 by -1
The answer would be -5/2
Let's try to find some primes that divide this number.
The number is not divisible by 2, because it is odd.
The number is divisible by 3 though, because the sum of its digits is:

So, we can divide the number by 3 and keep going with the factorization:

This number is again divisible by 3, because

We have

This number is no longer divisible by 3. Let's go on looking for primes that divide it: 5 doesn't because the number doesn't end in 0 nor 5. This number is not divisible by 7 or 11 either (just try). It is divisible by 13 though: we have

And 557 is prime, so we're done. This means that the prime factorization of 65169 is

We need the question to help
NOT NECESSARILY would a triangle be equilateral if one of its angles is 60 degrees. To be an equilateral triangle (a triangle in which all 3 sides have the same length), all 3 angles of the triangle would have to be 60°-angles; however, the triangle could be a 30°-60°-90° right triangle in which the side opposite the 30 degree angle is one-half as long as the hypotenuse, and the length of the side opposite the 60 degree angle is √3/2 as long as the hypotenuse. Another of possibly many examples would be a triangle with angles of 60°, 40°, and 80° which has opposite sides of lengths 2, 1.4845 (rounded to 4 decimal places), and 2.2743 (rounded to 4 decimal places), respectively, the last two of which were determined by using the Law of Sines: "In any triangle ABC, having sides of length a, b, and c, the following relationships are true: a/sin A = b/sin B = c/sin C."¹