Answer:
What's the question?
Step-by-step explanation:
Answer:
x° = 37°
Step-by-step explanation:
* Lets revise some facts of a circle
- The secant is a line intersect the circle in two points
- If two secants intersect each other in a point outside the circle,
then the measure of the angle between them is half the difference
of the measures of their intercepted arcs
* Now lets solve the problem
- There is a circle
- Two secants of this circle intersect each other in a point outside
the circle
∴ The measure of the angle between them = 1/2 the difference of the
measures of their intercepted arcs
∵ The measure of the angle between them is x°
∵ The measures of their intercepted arcs are 26° and 100°
- Use the rule above to find x
∴ x° = 1/2 [ measure of the large arc - measure of small arc]
∵ The measure of the large arc is 100°
∵ The measure of the small arc is 26°
∴ x° = 1/2 [100 - 26] = 1/2 [74] = 37°
∴ x° = 37°
-0.8b+4.1c-(-3.2b)-0.1c
-(-3.2b)= 3.2b
4.1c-0.1c=4c
-0.8b+4c+3.2b
-0.8b+3.2b=2.4b
4c+2.4b
We know the width of the rectangle in the middle of the trapezoid is 24 (from the top of the image), so we can subtract that from the bottom width of the trapezoid to get the combined length of the bottom of both triangles.

Since this is an isosceles trapezoid, both triangle bases are the same length, so we can cut this value in half to get the length of
and 

Finally, we can use the Pythagorean Theorem to find the length of
:





Answer:
24.5-9-6
Step-by-step explanation: